1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2016 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/types.hpp>
#include <ql/math/matrix.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/integrals/momentbasedgaussianpolynomial.hpp>
#include <ql/math/integrals/gausslaguerrecosinepolynomial.hpp>
#include <ql/experimental/math/gaussiannoncentralchisquaredpolynomial.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>
#ifndef TEST_BOOST_MULTIPRECISION_GAUSSIAN_QUADRATURE
//#define TEST_BOOST_MULTIPRECISION_GAUSSIAN_QUADRATURE
#endif
#ifdef TEST_BOOST_MULTIPRECISION_GAUSSIAN_QUADRATURE
#if BOOST_VERSION < 105300
#error This boost version is too old to support boost multi precision
#endif
#include <boost/multiprecision/cpp_dec_float.hpp>
#endif
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(GaussianQuadraturesTests)
template <class T>
void testSingle(const T& I, const std::string& tag,
const boost::function<Real(Real)>& f, Real expected) {
Real calculated = I(f);
if (std::fabs(calculated-expected) > 1.0e-4) {
BOOST_ERROR("integrating" << tag << "\n"
<< " calculated: " << calculated << "\n"
<< " expected: " << expected);
}
}
// test functions
Real inv_exp(Real x) {
return std::exp(-x);
}
Real x_inv_exp(Real x) {
return x*std::exp(-x);
}
Real x_normaldistribution(Real x) {
return x*NormalDistribution()(x);
}
Real x_x_normaldistribution(Real x) {
return x*x*NormalDistribution()(x);
}
Real inv_cosh(Real x) {
return 1/std::cosh(x);
}
Real x_inv_cosh(Real x) {
return x/std::cosh(x);
}
Real x_x_nonCentralChiSquared(Real x) {
return x * x * boost::math::pdf(
boost::math::non_central_chi_squared_distribution<Real>(4.0,1.0),x);
}
Real x_sin_exp_nonCentralChiSquared(Real x) {
return x * std::sin(0.1*x) * std::exp(0.3*x) * boost::math::pdf(
boost::math::non_central_chi_squared_distribution<Real>(1.0,1.0),x);
}
template <class T>
void testSingleJacobi(const T& I) {
testSingle(I, "f(x) = 1",
[](Real x) -> Real { return 1.0; }, 2.0);
testSingle(I, "f(x) = x",
[](Real x) -> Real { return x; }, 0.0);
testSingle(I, "f(x) = x^2",
[](Real x) -> Real{ return x * x; }, 2/3.);
testSingle(I, "f(x) = sin(x)",
[](Real x) -> Real { return std::sin(x); }, 0.0);
testSingle(I, "f(x) = cos(x)",
[](Real x) -> Real { return std::cos(x); },
std::sin(1.0)-std::sin(-1.0));
testSingle(I, "f(x) = Gaussian(x)",
NormalDistribution(),
CumulativeNormalDistribution()(1.0)
-CumulativeNormalDistribution()(-1.0));
}
template <class T>
void testSingleLaguerre(const T& I) {
testSingle(I, "f(x) = exp(-x)",
inv_exp, 1.0);
testSingle(I, "f(x) = x*exp(-x)",
x_inv_exp, 1.0);
testSingle(I, "f(x) = Gaussian(x)",
NormalDistribution(), 0.5);
}
void testSingleTabulated(const boost::function<Real(Real)>& f,
const std::string& tag,
Real expected, Real tolerance) {
const Size order[] = { 6, 7, 12, 20 };
TabulatedGaussLegendre quad;
for (unsigned long i : order) {
quad.order(i);
Real realised = quad(f);
if (std::fabs(realised-expected) > tolerance) {
BOOST_ERROR(" integrating " << tag << "\n"
<< " order " << i << "\n"
<< " realised: " << realised << "\n"
<< " expected: " << expected);
}
}
}
template <class mp_float>
class MomentBasedGaussLaguerrePolynomial
: public MomentBasedGaussianPolynomial<mp_float> {
public:
mp_float moment(Size i) const override {
if (i == 0)
return mp_float(1.0);
else
return mp_float(i)*moment(i-1);
}
Real w(Real x) const override { return std::exp(-x); }
};
BOOST_AUTO_TEST_CASE(testJacobi) {
BOOST_TEST_MESSAGE("Testing Gauss-Jacobi integration...");
testSingleJacobi(GaussLegendreIntegration(16));
testSingleJacobi(GaussChebyshevIntegration(130));
testSingleJacobi(GaussChebyshev2ndIntegration(130));
testSingleJacobi(GaussGegenbauerIntegration(50,0.55));
}
BOOST_AUTO_TEST_CASE(testLaguerre) {
BOOST_TEST_MESSAGE("Testing Gauss-Laguerre integration...");
testSingleLaguerre(GaussLaguerreIntegration(16));
testSingleLaguerre(GaussLaguerreIntegration(150,0.01));
testSingle(GaussLaguerreIntegration(16, 1.0), "f(x) = x*exp(-x)",
x_inv_exp, 1.0);
testSingle(GaussLaguerreIntegration(32, 0.9), "f(x) = x*exp(-x)",
x_inv_exp, 1.0);
}
BOOST_AUTO_TEST_CASE(testHermite) {
BOOST_TEST_MESSAGE("Testing Gauss-Hermite integration...");
testSingle(GaussHermiteIntegration(16), "f(x) = Gaussian(x)",
NormalDistribution(), 1.0);
testSingle(GaussHermiteIntegration(16,0.5), "f(x) = x*Gaussian(x)",
x_normaldistribution, 0.0);
testSingle(GaussHermiteIntegration(64,0.9), "f(x) = x*x*Gaussian(x)",
x_x_normaldistribution, 1.0);
}
BOOST_AUTO_TEST_CASE(testHyperbolic) {
BOOST_TEST_MESSAGE("Testing Gauss hyperbolic integration...");
testSingle(GaussHyperbolicIntegration(16), "f(x) = 1/cosh(x)",
inv_cosh, M_PI);
testSingle(GaussHyperbolicIntegration(16), "f(x) = x/cosh(x)",
x_inv_cosh, 0.0);
}
BOOST_AUTO_TEST_CASE(testTabulated) {
BOOST_TEST_MESSAGE("Testing tabulated Gauss-Laguerre integration...");
testSingleTabulated([](Real x) -> Real { return x; }, "f(x) = x",
0.0, 1.0e-13);
testSingleTabulated([](Real x) -> Real { return x * x; }, "f(x) = x^2",
(2.0/3.0), 1.0e-13);
testSingleTabulated([](Real x) -> Real { return x * x * x; }, "f(x) = x^3",
0.0, 1.0e-13);
testSingleTabulated([](Real x) -> Real { return x * x * x * x; }, "f(x) = x^4",
(2.0/5.0), 1.0e-13);
}
BOOST_AUTO_TEST_CASE(testMomentBasedGaussianPolynomial) {
BOOST_TEST_MESSAGE("Testing moment-based Gaussian polynomials...");
GaussLaguerrePolynomial g;
std::vector<ext::shared_ptr<GaussianOrthogonalPolynomial> > ml;
ml.push_back(
ext::make_shared<MomentBasedGaussLaguerrePolynomial<Real> >());
#ifdef TEST_BOOST_MULTIPRECISION_GAUSSIAN_QUADRATURE
ml.push_back(
ext::make_shared<MomentBasedGaussLaguerrePolynomial<
boost::multiprecision::number<
boost::multiprecision::cpp_dec_float<20> > > >());
#endif
const Real tol = 1e-12;
for (auto& k : ml) {
for (Size i=0; i < 10; ++i) {
const Real diffAlpha = std::fabs(k->alpha(i) - g.alpha(i));
const Real diffBeta = std::fabs(k->beta(i) - g.beta(i));
if (diffAlpha > tol) {
BOOST_ERROR("failed to reproduce alpha for Laguerre quadrature"
<< "\n calculated: " << k->alpha(i) << "\n expected : "
<< g.alpha(i) << "\n diff : " << diffAlpha);
}
if (i > 0 && diffBeta > tol) {
BOOST_ERROR("failed to reproduce beta for Laguerre quadrature"
<< "\n calculated: " << k->beta(i) << "\n expected : "
<< g.beta(i) << "\n diff : " << diffBeta);
}
}
}
}
BOOST_AUTO_TEST_CASE(testGaussLaguerreCosinePolynomial) {
BOOST_TEST_MESSAGE("Testing Gauss-Laguerre-Cosine quadrature...");
const GaussianQuadrature quadCosine(
16, GaussLaguerreCosinePolynomial<Real>(0.2));
testSingle(quadCosine, "f(x) = exp(-x)",
inv_exp, 1.0);
testSingle(quadCosine, "f(x) = x*exp(-x)",
x_inv_exp, 1.0);
const GaussianQuadrature quadSine(
16, GaussLaguerreSinePolynomial<Real>(0.2));
testSingle(quadSine, "f(x) = exp(-x)",
inv_exp, 1.0);
testSingle(quadSine, "f(x) = x*exp(-x)",
x_inv_exp, 1.0);
}
BOOST_AUTO_TEST_CASE(testNonCentralChiSquared) {
BOOST_TEST_MESSAGE(
"Testing Gauss non-central chi-squared integration...");
testSingle(
GaussianQuadrature(2, GaussNonCentralChiSquaredPolynomial(4.0, 1.0)),
"f(x) = x^2 * nonCentralChiSquared(4, 1)(x)",
x_x_nonCentralChiSquared, 37.0);
testSingle(
GaussianQuadrature(14, GaussNonCentralChiSquaredPolynomial(1.0, 1.0)),
"f(x) = x * sin(0.1*x)*exp(0.3*x)*nonCentralChiSquared(1, 1)(x)",
x_sin_exp_nonCentralChiSquared, 17.408092);
}
BOOST_AUTO_TEST_CASE(testNonCentralChiSquaredSumOfNodes) {
BOOST_TEST_MESSAGE(
"Testing Gauss non-central chi-squared sum of nodes...");
// Walter Gautschi, How and How not to check Gaussian Quadrature Formulae
// https://www.cs.purdue.edu/homes/wxg/selected_works/section_08/084.pdf
// Expected results have been calculated with a multi precision library
// following the description of test #4 in the paper above.
// Using QuantLib's own determinant function will not work here
// as it supports only double precision.
const Real expected[] = {
47.53491786730293,
70.6103295419633383,
98.0593406849441607,
129.853401537905341,
165.96963582663912,
206.389183233992043
};
const Real nu=4.0;
const Real lambda=1.0;
const GaussNonCentralChiSquaredPolynomial orthPoly(nu, lambda);
const Real tol = 1e-5;
for (Size n = 4; n < 10; ++n) {
const Array x = GaussianQuadrature(n, orthPoly).x();
const Real calculated = std::accumulate(x.begin(), x.end(), Real(0.0));
if (std::fabs(calculated - expected[n-4]) > tol) {
BOOST_ERROR("failed to reproduce rule of sum"
<< "\n calculated: " << calculated
<< "\n expected: " << expected[n-4]
<< "\n diff : " << calculated - expected[n-4]);
}
}
}
BOOST_AUTO_TEST_CASE(testMultiDimensionalGaussIntegration) {
BOOST_TEST_MESSAGE("Testing multi-dimensional Gaussian quadrature...");
const auto normal = [](const Array& x) -> Real {
return std::exp(-DotProduct(x, x));
};
for (Size n=1; n < 5; ++n) {
std::vector<Size> ns(n);
std::iota(ns.begin(), ns.end(), Size(1));
MultiDimGaussianIntegration quad(
ns,
[](const Size n) {
return ext::make_shared<GaussHermiteIntegration>(n);
}
);
constexpr double tol = 1e4*QL_EPSILON;
const Real calculated = quad(normal);
const Real expected = std::sqrt(std::pow(M_PI, Real(n)));
const Real diff = std::abs(expected-calculated);
if (diff > tol) {
BOOST_ERROR("failed to reproduce multi dimensional Gaussian quadrature"
<< std::setprecision(12)
<< "\n calculated: " << calculated
<< "\n expected: " << expected
<< "\n diff: " << diff);
}
}
// testing some Gaussian Integrals
// https://en.wikipedia.org/wiki/Gaussian_integral
MersenneTwisterUniformRng rng(1234);
const std::vector<Size> ns = {20, 28, 16, 22};
const std::vector<Real> tols = {1e-8, 1e-6, 1e-2, 5e-2};
for (Size n=1; n < 5; ++n) {
// create symmetric positive-definite matrix
Matrix a(n, n);
for (Size i=0; i < n; ++i)
for (Size j=0; j < n; ++j)
a[i][j] = (i==j) ? (i+1) : rng.nextReal();
const Matrix A = a*transpose(a);
const Matrix invA = inverse(A);
const Real det_2piA = std::sqrt(determinant(M_TWOPI*invA));
const MultiDimGaussianIntegration quad(
std::vector<Size>(ns.begin(), ns.begin()+n),
[](const Size n) { return ext::make_shared<GaussHermiteIntegration>(n); }
);
const Real calculated = quad(
[&A](const Array& x) -> Real { return std::exp(-0.5*DotProduct(x, A*x)); }
);
const Real expected = det_2piA;
const Real diff = std::abs(calculated - expected);
if (diff > tols[n-1]) {
BOOST_ERROR("failed to reproduce multi dimensional Gaussian quadrature"
<< "\n dimensions: " << n
<< std::setprecision(12)
<< "\n calculated: " << calculated
<< "\n expected: " << expected
<< "\n diff: " << diff
<< "\n tolerance: " << tols[n-1]);
}
}
Matrix a(3, 3);
for (Size i=0; i < 3; ++i)
for (Size j=0; j < 3; ++j)
a[i][j] = (i==j) ? (i+1) : rng.nextReal();
const Matrix A = a*transpose(a);
const Matrix invA = inverse(A);
const Real sqrt_det_2piA = std::sqrt(determinant(M_TWOPI*invA));
const MultiDimGaussianIntegration quadHigh(
std::vector<Size>({22, 18, 26}),
[](const Size n) { return ext::make_shared<GaussHermiteIntegration>(n); }
);
const MultiDimGaussianIntegration quad2(
std::vector<Size>(3, 2),
[](const Size n) { return ext::make_shared<GaussHermiteIntegration>(n); }
);
for (Size i=0; i < 3; ++i)
for (Size j=0; j < 3; ++j) {
const Real expected = sqrt_det_2piA*invA[i][j];
Real calculated = quadHigh(
[&A, i, j](const Array& x) -> Real {
return x[i]*x[j]*std::exp(-0.5*DotProduct(x, A*x));
}
);
Real diff = std::abs(calculated - expected);
Real tol = 1e-4;
if (diff > tol) {
BOOST_ERROR("failed to reproduce multi dimensional Gaussian quadrature"
<< std::setprecision(12)
<< "\n calculated: " << calculated
<< "\n expected: " << expected
<< "\n diff: " << diff
<< "\n tolerance: " << tol);
}
Matrix inva = inverse(transpose(a));
calculated = quad2(
[&inva, i, j](const Array& x) -> Real {
const Array f = M_SQRT2*inva*x;
return f[i]*f[j]*std::exp(-DotProduct(x, x));
}
);
calculated *= determinant(M_SQRT2*inva);
diff = std::abs(calculated - expected);
tol = QL_EPSILON*1e4;
if (diff > tol) {
BOOST_ERROR("failed to reproduce multi dimensional Gaussian quadrature"
<< std::setprecision(12)
<< "\n calculated: " << calculated
<< "\n expected: " << expected
<< "\n diff: " << diff
<< "\n tolerance: " << tol);
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|