1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2013 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/processes/gsrprocess.hpp>
#include <ql/models/shortrate/onefactormodels/gsr.hpp>
#include <ql/instruments/nonstandardswap.hpp>
#include <ql/instruments/nonstandardswaption.hpp>
#include <ql/pricingengines/swaption/gaussian1dswaptionengine.hpp>
#include <ql/pricingengines/swaption/gaussian1djamshidianswaptionengine.hpp>
#include <ql/pricingengines/swaption/gaussian1dnonstandardswaptionengine.hpp>
#include <ql/indexes/swap/euriborswap.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/processes/hullwhiteprocess.hpp>
#include <ql/models/shortrate/onefactormodels/hullwhite.hpp>
#include <ql/models/shortrate/calibrationhelpers/swaptionhelper.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/pricingengines/swaption/jamshidianswaptionengine.hpp>
#include <ql/time/daycounters/actual360.hpp>
#include <ql/time/daycounters/thirty360.hpp>
#include <ql/indexes/ibor/euribor.hpp>
#include <ql/termstructures/volatility/swaption/swaptionconstantvol.hpp>
#include <ql/instruments/makevanillaswap.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
using namespace QuantLib;
using boost::unit_test_framework::test_suite;
using std::fabs;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(GsrTests)
BOOST_AUTO_TEST_CASE(testGsrProcess) {
BOOST_TEST_MESSAGE("Testing GSR process...");
Date refDate = Settings::instance().evaluationDate();
// constant reversion, constant volatility, test conditional expectation and
// variance against
// existing HullWhiteForwardProcess
// technically we test two representations of the same constant reversion
// and volatility structure,
// namely with and without step dates
Real tol = 1E-8;
Real reversion = 0.01;
Real modelvol = 0.01;
Handle<YieldTermStructure> yts0(ext::shared_ptr<YieldTermStructure>(
new FlatForward(0, TARGET(), 0.00, Actual365Fixed())));
std::vector<Date> stepDates0;
std::vector<Real> vols0(1, modelvol);
std::vector<Real> reversions0(1, reversion);
std::vector<Date> stepDates1;
for (Size i = 1; i < 60; i++)
stepDates1.push_back(refDate + (i * 6 * Months));
std::vector<Real> vols1(stepDates1.size() + 1, modelvol);
std::vector<Real> reversions1(stepDates1.size() + 1, reversion);
Real T = 10.0;
do {
ext::shared_ptr<Gsr> model(
new Gsr(yts0, stepDates0, vols0, reversions0, T));
ext::shared_ptr<StochasticProcess1D> gsrProcess =
model->stateProcess();
ext::shared_ptr<Gsr> model2(
new Gsr(yts0, stepDates1, vols1, reversions1, T));
ext::shared_ptr<StochasticProcess1D> gsrProcess2 =
model2->stateProcess();
ext::shared_ptr<HullWhiteForwardProcess> hwProcess(
new HullWhiteForwardProcess(yts0, reversion, modelvol));
hwProcess->setForwardMeasureTime(T);
Real w, t, xw, hwVal, gsrVal, gsr2Val;
t = 0.5;
do {
w = 0.0;
do {
xw = -0.1;
do {
hwVal = hwProcess->expectation(w, xw, t - w);
gsrVal = gsrProcess->expectation(w, xw, t - w);
gsr2Val = gsrProcess2->expectation(w, xw, t - w);
if (fabs(hwVal - gsrVal) > tol)
BOOST_ERROR(
"Expectation E^{T="
<< T << "}(x(" << t << ") | x(" << w << ") = " << xw
<< " is different in HullWhiteProcess(" << hwVal
<< ") and GsrProcess (" << gsrVal << ")");
if (fabs(hwVal - gsr2Val) > tol)
BOOST_ERROR(
"Expectation E^{T="
<< T << "}(x(" << t << ") | x(" << w << ") = " << xw
<< " is different in HullWhiteProcess(" << hwVal
<< ") and GsrProcess2 (" << gsr2Val << ")");
hwVal = hwProcess->variance(w, xw, t - w);
gsrVal = gsrProcess->variance(w, xw, t - w);
gsr2Val = gsrProcess2->variance(w, xw, t - w);
if (fabs(hwVal - gsrVal) > tol)
BOOST_ERROR("Variance V((x("
<< t << ") | x(" << w << ") = " << xw
<< " is different in HullWhiteProcess("
<< hwVal << ") and GsrProcess (" << gsrVal
<< ")");
if (fabs(hwVal - gsr2Val) > tol)
BOOST_ERROR("Variance V((x("
<< t << ") | x(" << w << ") = " << xw
<< " is different in HullWhiteProcess("
<< hwVal << ") and GsrProcess2 (" << gsr2Val
<< ")");
xw += 0.01;
} while (xw <= 0.1);
w += t / 5.0;
} while (w <= t - 0.1);
t += T / 20.0;
} while (t <= T - 0.1);
T += 10.0;
} while (T <= 30.0);
// time dependent reversion and volatility (test cases to be added)
Array times(2);
Array vols(3);
Array reversions(3);
times[0] = 1.0;
times[1] = 2.0;
vols[0] = 0.2;
vols[1] = 0.3;
vols[2] = 0.4;
reversions[0] = 0.50;
reversions[1] = 0.80;
reversions[2] = 1.30;
GsrProcess p(times, vols, reversions);
p.setForwardMeasureTime(10.0);
// add more test cases here ...
}
BOOST_AUTO_TEST_CASE(testGsrModel) {
BOOST_TEST_MESSAGE("Testing GSR model...");
Date refDate = Settings::instance().evaluationDate();
Real modelvol = 0.01;
Real reversion = 0.01;
std::vector<Date> stepDates; // no step dates
std::vector<Real> vols(1, modelvol);
std::vector<Real> reversions(1, reversion);
std::vector<Date> stepDates1; // artificial step dates (should yield the
// same result)
for (Size i = 1; i < 60; i++)
stepDates1.push_back(refDate + (i * 6 * Months));
std::vector<Real> vols1(stepDates1.size() + 1, modelvol);
std::vector<Real> reversions1(stepDates1.size() + 1, reversion);
Handle<YieldTermStructure> yts(ext::shared_ptr<YieldTermStructure>(
new FlatForward(0, TARGET(), 0.03, Actual365Fixed())));
ext::shared_ptr<Gsr> model(
new Gsr(yts, stepDates, vols, reversions, 50.0));
ext::shared_ptr<Gsr> model2(
new Gsr(yts, stepDates1, vols1, reversions1, 50.0));
ext::shared_ptr<HullWhite> hw(new HullWhite(yts, reversion, modelvol));
// test zerobond prices against existing HullWhite model
// technically we test two representations of the same constant reversion
// and volatility structure,
// namely with and without step dates
Real tol0 = 1E-8;
Real w, t, xw;
w = 0.1;
do {
t = w + 0.1;
do {
xw = -0.10;
do {
Real yw =
(xw - model->stateProcess()->expectation(0.0, 0.0, w)) /
model->stateProcess()->stdDeviation(0.0, 0.0, w);
Real rw = xw + 0.03; // instantaneous forward is 0.03
Real gsrVal = model->zerobond(t, w, yw);
Real gsr2Val = model2->zerobond(t, w, yw);
Real hwVal = hw->discountBond(w, t, rw);
if (fabs(gsrVal - hwVal) > tol0)
BOOST_ERROR("Zerobond P("
<< w << "," << t << " | x=" << xw << " / y="
<< yw << ") is different in HullWhite ("
<< hwVal << ") and Gsr (" << gsrVal << ")");
if (fabs(gsr2Val - hwVal) > tol0)
BOOST_ERROR("Zerobond P("
<< w << "," << t << " | x=" << xw << " / y="
<< yw << ") is different in HullWhite ("
<< hwVal << ") and Gsr2 (" << gsr2Val << ")");
xw += 0.01;
} while (xw <= 0.10);
t += 2.5;
} while (t <= 50.0);
w += 5.0;
} while (w <= 50.0);
// test standard, nonstandard and jamshidian engine against existing Hull
// White Jamshidian engine
Date expiry = TARGET().advance(refDate, 5 * Years);
Period tenor = 10 * Years;
ext::shared_ptr<SwapIndex> swpIdx(new EuriborSwapIsdaFixA(tenor, yts));
Real forward = swpIdx->fixing(expiry);
ext::shared_ptr<VanillaSwap> underlying = swpIdx->underlyingSwap(expiry);
ext::shared_ptr<VanillaSwap> underlyingFixed =
MakeVanillaSwap(10 * Years, swpIdx->iborIndex(), forward)
.withEffectiveDate(swpIdx->valueDate(expiry))
.withFixedLegCalendar(swpIdx->fixingCalendar())
.withFixedLegDayCount(swpIdx->dayCounter())
.withFixedLegTenor(swpIdx->fixedLegTenor())
.withFixedLegConvention(swpIdx->fixedLegConvention())
.withFixedLegTerminationDateConvention(
swpIdx->fixedLegConvention());
ext::shared_ptr<Exercise> exercise(new EuropeanExercise(expiry));
ext::shared_ptr<Swaption> stdswaption(
new Swaption(underlyingFixed, exercise));
ext::shared_ptr<NonstandardSwaption> nonstdswaption(
new NonstandardSwaption(*stdswaption));
stdswaption->setPricingEngine(ext::shared_ptr<PricingEngine>(
new JamshidianSwaptionEngine(hw, yts)));
Real HwJamNpv = stdswaption->NPV();
nonstdswaption->setPricingEngine(ext::shared_ptr<PricingEngine>(
new Gaussian1dNonstandardSwaptionEngine(model, 64, 7.0, true, false)));
stdswaption->setPricingEngine(ext::shared_ptr<PricingEngine>(
new Gaussian1dSwaptionEngine(model, 64, 7.0, true, false)));
Real GsrNonStdNpv = nonstdswaption->NPV();
Real GsrStdNpv = stdswaption->NPV();
stdswaption->setPricingEngine(ext::shared_ptr<PricingEngine>(
new Gaussian1dJamshidianSwaptionEngine(model)));
Real GsrJamNpv = stdswaption->NPV();
if (fabs(HwJamNpv - GsrNonStdNpv) > 0.00005)
BOOST_ERROR(
"Jamshidian HW NPV ("
<< HwJamNpv
<< ") deviates from Gaussian1dNonstandardSwaptionEngine NPV ("
<< GsrNonStdNpv << ")");
if (fabs(HwJamNpv - GsrStdNpv) > 0.00005)
BOOST_ERROR("Jamshidian HW NPV ("
<< HwJamNpv
<< ") deviates from Gaussian1dSwaptionEngine NPV ("
<< GsrStdNpv << ")");
if (fabs(HwJamNpv - GsrJamNpv) > 0.00005)
BOOST_ERROR("Jamshidian HW NPV ("
<< HwJamNpv
<< ") deviates from Gaussian1dJamshidianEngine NPV ("
<< GsrJamNpv << ")");
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|