File: integrals.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (643 lines) | stat: -rw-r--r-- 37,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 RiskMap srl
 Copyright (C) 2015 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/integrals/exponentialintegrals.hpp>
#include <ql/math/integrals/filonintegral.hpp>
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/math/integrals/discreteintegrals.hpp>
#include <ql/math/integrals/expsinhintegral.hpp>
#include <ql/math/integrals/tanhsinhintegral.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/interpolations/bilinearinterpolation.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/termstructures/volatility/abcd.hpp>
#include <ql/math/integrals/twodimensionalintegral.hpp>
#include <ql/experimental/math/piecewisefunction.hpp>
#include <ql/experimental/math/piecewiseintegral.hpp>

#include <boost/math/special_functions/sign.hpp>

using namespace QuantLib;
using namespace boost::unit_test;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(IntegralTests)

Real tolerance = 1.0e-6;

template <class T>
void testSingle(const T& I, const std::string& tag,
                const std::function<Real (Real)>& f,
                Real xMin, Real xMax, Real expected) {
    Real calculated = I(f,xMin,xMax);
    if (std::fabs(calculated-expected) > tolerance) {
        BOOST_FAIL(std::setprecision(10)
                   << "integrating " << tag
                   << "    calculated: " << calculated
                   << "    expected:   " << expected);
    }
}

template <class T>
void testSeveral(const T& I) {
    testSingle(I, "f(x) = 0", [](Real x) -> Real { return 0.0; }, 0.0, 1.0, 0.0);
    testSingle(I, "f(x) = 1", [](Real x) -> Real { return 1.0; }, 0.0, 1.0, 1.0);
    testSingle(I, "f(x) = x", [](Real x) -> Real { return x; }, 0.0, 1.0, 0.5);
    testSingle(I, "f(x) = x^2",
               [](Real x) -> Real { return x * x; }, 0.0, 1.0, 1.0/3.0);
    testSingle(I, "f(x) = sin(x)",
               [](Real x) -> Real { return std::sin(x); }, 0.0, M_PI, 2.0);
    testSingle(I, "f(x) = cos(x)",
               [](Real x) -> Real { return std::cos(x); }, 0.0, M_PI, 0.0);

    testSingle(I, "f(x) = Gaussian(x)",
               NormalDistribution(), -10.0, 10.0, 1.0);
    testSingle(I, "f(x) = Abcd2(x)",
               AbcdSquared(0.07, 0.07, 0.5, 0.1, 8.0, 10.0), 5.0, 6.0,
               AbcdFunction(0.07, 0.07, 0.5, 0.1).covariance(5.0, 6.0, 8.0, 10.0));
}

template <class T>
void testDegeneratedDomain(const T& I) {
    testSingle(I, "f(x) = 0 over [1, 1 + macheps]", [](Real x) -> Real { return 0.0; }, 1.0,
               1.0 + QL_EPSILON, 0.0);
}

class sineF {
  public:
    Real operator()(Real x) const {
        return std::exp(-0.5*(x - M_PI_2/100));
    }
};

class cosineF {
  public:
    Real operator()(Real x) const {
        return std::exp(-0.5*x);
    }
};

Real f1(Real x) {
    return 1.2*x*x+3.2*x+3.1;
}

Real f2(Real x) {
    return 4.3*(x-2.34)*(x-2.34)-6.2*(x-2.34) + f1(2.34);
}

std::vector<Real> x, y;

Real pw_fct(const Real t) { return QL_PIECEWISE_FUNCTION(x, y, t); }

void pw_check(const Integrator &in, const Real a, const Real b,
              const Real expected) {
    Real calculated = in(pw_fct, a, b);
    if (!close(calculated, expected))
        BOOST_FAIL(std::setprecision(16)
                   << "piecewise integration over [" << a << "," << b
                   << "] failed: "
                   << "\n   calculated: " << calculated
                   << "\n   expected:   " << expected
                   << "\n   difference: " << (calculated - expected));
}

template <class T>
void reportSiCiFail(
                    const std::string& name, T z, T c, T e, Real diff, Real tol) {
    BOOST_FAIL(std::setprecision(16)
               << name << " calculation failed for " << z
               << "\n calculated: " << c
               << "\n expected:   " << e
               << "\n difference: " << diff
               << "\n tolerance:  " << tol);
}


BOOST_AUTO_TEST_CASE(testSegment) {
    BOOST_TEST_MESSAGE("Testing segment integration...");

    testSeveral(SegmentIntegral(10000));
    testDegeneratedDomain(SegmentIntegral(10000));
}

BOOST_AUTO_TEST_CASE(testTrapezoid) {
    BOOST_TEST_MESSAGE("Testing trapezoid integration...");

    testSeveral(TrapezoidIntegral<Default>(tolerance, 10000));
    testDegeneratedDomain(TrapezoidIntegral<Default>(tolerance, 10000));
}

BOOST_AUTO_TEST_CASE(testMidPointTrapezoid) {
    BOOST_TEST_MESSAGE("Testing mid-point trapezoid integration...");

    testSeveral(TrapezoidIntegral<MidPoint>(tolerance, 10000));
    testDegeneratedDomain(TrapezoidIntegral<MidPoint>(tolerance, 10000));
}

BOOST_AUTO_TEST_CASE(testSimpson) {
    BOOST_TEST_MESSAGE("Testing Simpson integration...");

    testSeveral(SimpsonIntegral(tolerance, 10000));
    testDegeneratedDomain(SimpsonIntegral(tolerance, 10000));
}

BOOST_AUTO_TEST_CASE(testGaussKronrodAdaptive) {
    BOOST_TEST_MESSAGE("Testing adaptive Gauss-Kronrod integration...");

    Size maxEvaluations = 1000;
    testSeveral(GaussKronrodAdaptive(tolerance, maxEvaluations));
    testDegeneratedDomain(GaussKronrodAdaptive(tolerance, maxEvaluations));
}

BOOST_AUTO_TEST_CASE(testGaussLobatto) {
    BOOST_TEST_MESSAGE("Testing adaptive Gauss-Lobatto integration...");

    Size maxEvaluations = 1000;
    testSeveral(GaussLobattoIntegral(maxEvaluations, tolerance));
    // on degenerated domain [1,1+macheps] an exception is thrown
    // which is also ok, but not tested here
}

#ifdef QL_BOOST_HAS_TANH_SINH
BOOST_AUTO_TEST_CASE(testTanhSinh) {
    BOOST_TEST_MESSAGE("Testing tanh-sinh integration...");

    testSeveral(TanhSinhIntegral());
}
#endif

#ifdef QL_BOOST_HAS_EXP_SINH
BOOST_AUTO_TEST_CASE(testExpSinh) {
    BOOST_TEST_MESSAGE("Testing exp-sinh integration...");

    const ExpSinhIntegral integrator;
    testSingle(integrator,
        "f(x) = Gaussian(x)", NormalDistribution(),
        0.0, std::numeric_limits<Real>::max(), 0.5);

    testSingle(integrator,
        "f(x) = x*e^(-x)", [](Real x) { return x*std::exp(-x); },
        0.0, std::numeric_limits<Real>::max(), 1.0);
}
#endif

BOOST_AUTO_TEST_CASE(testGaussLegendreIntegrator) {
    BOOST_TEST_MESSAGE("Testing Gauss-Legendre integrator...");

    const GaussLegendreIntegrator integrator(64);
    testSeveral(integrator);
    testDegeneratedDomain(integrator);
}

BOOST_AUTO_TEST_CASE(testGaussChebyshevIntegrator) {
    BOOST_TEST_MESSAGE("Testing Gauss-Chebyshev integrator...");

    const GaussChebyshevIntegrator integrator(64);
    testSingle(integrator, "f(x) = Gaussian(x)",
               NormalDistribution(), -10.0, 10.0, 1.0);
    testDegeneratedDomain(integrator);
}

BOOST_AUTO_TEST_CASE(testGaussChebyshev2ndIntegrator) {
    BOOST_TEST_MESSAGE("Testing Gauss-Chebyshev 2nd integrator...");

    const GaussChebyshev2ndIntegrator integrator(64);
    testSingle(integrator, "f(x) = Gaussian(x)",
               NormalDistribution(), -10.0, 10.0, 1.0);
    testDegeneratedDomain(integrator);
}

BOOST_AUTO_TEST_CASE(testGaussKronrodNonAdaptive) {
    BOOST_TEST_MESSAGE("Testing non-adaptive Gauss-Kronrod integration...");

    Real precision = tolerance;
    Size maxEvaluations = 100;
    Real relativeAccuracy = tolerance;
    GaussKronrodNonAdaptive gaussKronrodNonAdaptive(precision, maxEvaluations,
                                                    relativeAccuracy);
    testSeveral(gaussKronrodNonAdaptive);
    testDegeneratedDomain(gaussKronrodNonAdaptive);
}

BOOST_AUTO_TEST_CASE(testTwoDimensionalIntegration) {
    BOOST_TEST_MESSAGE("Testing two dimensional adaptive "
                       "Gauss-Lobatto integration...");

    const Size maxEvaluations = 1000;
    const Real calculated = TwoDimensionalIntegral(
        ext::shared_ptr<Integrator>(
            new TrapezoidIntegral<Default>(tolerance, maxEvaluations)),
        ext::shared_ptr<Integrator>(
            new TrapezoidIntegral<Default>(tolerance, maxEvaluations)))(
        std::multiplies<>(),
        std::make_pair(0.0, 0.0), std::make_pair(1.0, 2.0));

    const Real expected = 1.0;
    if (std::fabs(calculated-expected) > tolerance) {
        BOOST_FAIL(std::setprecision(10)
                   << "two dimensional integration: "
                   << "\n    calculated: " << calculated
                   << "\n    expected:   " << expected);
    }
}

BOOST_AUTO_TEST_CASE(testFolinIntegration) {
    BOOST_TEST_MESSAGE("Testing Folin's integral formulae...");

    // Examples taken from
    // http://www.tat.physik.uni-tuebingen.de/~kokkotas/Teaching/Num_Methods_files/Comp_Phys5.pdf
    const Size nr[] = { 4, 8, 16, 128, 256, 1024, 2048 };
    const Real expected[] = { 4.55229440e-5,4.72338540e-5, 4.72338540e-5,
                              4.78308678e-5,4.78404787e-5, 4.78381120e-5,
                              4.78381084e-5};

    const Real t = 100;
    const Real o = M_PI_2/t;

    const Real tol = 1e-12;

    for (Size i=0; i < std::size(nr); ++i) {
        const Size n = nr[i];
        const Real calculatedCosine
            = FilonIntegral(FilonIntegral::Cosine, t, n)(cosineF(),0,2*M_PI);
        const Real calculatedSine
            = FilonIntegral(FilonIntegral::Sine, t, n)
                (sineF(), o,2*M_PI + o);

        if (std::fabs(calculatedCosine-expected[i]) > tol) {
            BOOST_FAIL(std::setprecision(10)
                << "Filon Cosine integration failed: "
                << "\n    calculated: " << calculatedCosine
                << "\n    expected:   " << expected[i]);
        }
        if (std::fabs(calculatedSine-expected[i]) > tol) {
            BOOST_FAIL(std::setprecision(10)
                << "Filon Sine integration failed: "
                << "\n    calculated: " << calculatedCosine
                << "\n    expected:   " << expected[i]);
        }
    }
}

BOOST_AUTO_TEST_CASE(testDiscreteIntegrals) {
    BOOST_TEST_MESSAGE("Testing discrete integral formulae...");

    Array x(6), f(6);
    x[0] = 1.0; x[1] = 2.02; x[2] = 2.34; x[3] = 3.3; x[4] = 4.2; x[5] = 4.6;

    std::transform(x.begin(), x.begin()+3, f.begin(),   f1);
    std::transform(x.begin()+3, x.end(),   f.begin()+3, f2);

    const Real expectedSimpson =
        16.0401216 + 30.4137528 + 0.2*f2(4.2) + 0.2*f2(4.6);
    const Real expectedTrapezoid =
          0.5*(f1(1.0)  + f1(2.02))*1.02
        + 0.5*(f1(2.02) + f1(2.34))*0.32
        + 0.5*(f2(2.34) + f2(3.3) )*0.96
        + 0.5*(f2(3.3)  + f2(4.2) )*0.9
        + 0.5*(f2(4.2)  + f2(4.6) )*0.4;

    const Real calculatedSimpson =  DiscreteSimpsonIntegral()(x, f);
    const Real calculatedTrapezoid = DiscreteTrapezoidIntegral()(x, f);

    const Real tol = 1e-12;
    if (std::fabs(calculatedSimpson-expectedSimpson) > tol) {
        BOOST_FAIL(std::setprecision(16)
            << "discrete Simpson integration failed: "
            << "\n    calculated: " << calculatedSimpson
            << "\n    expected:   " << expectedSimpson);
    }

    if (std::fabs(calculatedTrapezoid-expectedTrapezoid) > tol) {
        BOOST_FAIL(std::setprecision(16)
            << "discrete Trapezoid integration failed: "
            << "\n    calculated: " << calculatedTrapezoid
            << "\n    expected:   " << expectedTrapezoid);
    }
}

BOOST_AUTO_TEST_CASE(testDiscreteIntegrator) {
    BOOST_TEST_MESSAGE("Testing discrete integrator formulae...");

    testSeveral(DiscreteSimpsonIntegrator(300));
    testSeveral(DiscreteTrapezoidIntegrator(3000));
}

BOOST_AUTO_TEST_CASE(testPiecewiseIntegral) {
    BOOST_TEST_MESSAGE("Testing piecewise integral...");

    x = { 1.0, 2.0, 3.0, 4.0, 5.0 };
    y = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
    ext::shared_ptr<Integrator> segment =
        ext::make_shared<SegmentIntegral>(1);
    ext::shared_ptr<Integrator> piecewise =
        ext::make_shared<PiecewiseIntegral>(segment, x);
    pw_check(*piecewise, -1.0, 0.0, 1.0);
    pw_check(*piecewise, 0.0, 1.0, 1.0);
    pw_check(*piecewise, 0.0, 1.5, 2.0);
    pw_check(*piecewise, 0.0, 2.0, 3.0);
    pw_check(*piecewise, 0.0, 2.5, 4.5);
    pw_check(*piecewise, 0.0, 3.0, 6.0);
    pw_check(*piecewise, 0.0, 4.0, 10.0);
    pw_check(*piecewise, 0.0, 5.0, 15.0);
    pw_check(*piecewise, 0.0, 6.0, 21.0);
    pw_check(*piecewise, 0.0, 7.0, 27.0);
    pw_check(*piecewise, 3.5, 4.5, 4.5);
    pw_check(*piecewise, 5.0, 10.0, 30.0);
    pw_check(*piecewise, 9.0, 10.0, 6.0);
}

BOOST_AUTO_TEST_CASE(testExponentialIntegral) {
    BOOST_TEST_MESSAGE("Testing exponential integrals...");

    using namespace ExponentialIntegral;

    // reference values are calculated with Mathematica or Python/mpmath
    const Real data[][10] = {
        {1e-10, 0.0, 1.0e-10, 0.0, -22.4486352650389, 0.0, -22.4486352649389, 0.0, 22.4486352651389, 0.0},
        {7.0710678118655e-11, 7.0710678118655e-11, 7.0710678118655e-11, 7.0710678118655e-11, -22.4486352650389, 0.785398163397448, -22.4486352649682, 0.785398163468159, 22.4486352651096, -0.785398163326738},
        {3.0901699437495e-11, 9.5105651629515e-11, 3.0901699437495e-11, 9.5105651629515e-11, -22.4486352650389, 1.25663706143591, -22.448635265008, 1.25663706153102, 22.4486352650698, -1.25663706134081},
        {0.0, 1e-10, 0.0, 1.0e-10, -22.4486352650389, 1.5707963267949, -22.4486352650389, 1.5707963268949, 22.4486352650389, -1.5707963266949},
        {0.0, 1e-10, 0.0, 1.0e-10, -22.4486352650389, 1.5707963267949, -22.4486352650389, 1.5707963268949, 22.4486352650389, -1.5707963266949},
        {-8.0901699437495e-11, 5.8778525229247e-11, -8.0901699437495e-11, 5.8778525229247e-11, -22.4486352650389, 2.51327412287184, -22.4486352651198, 2.51327412293062, 22.448635264958, -2.51327412281306},
        {-1e-10, 0.0, -1.0e-10, 0.0, -22.4486352650389, 3.14159265358979, -22.4486352651389, 0.0, 22.4486352649389, -3.14159265358979},
        {-8.0901699437495e-11, -5.8778525229247e-11, -8.0901699437495e-11, -5.8778525229247e-11, -22.4486352650389, -2.51327412287184, -22.4486352651198, -2.51327412293062, 22.448635264958, 2.51327412281306},
        {0.0, -1e-10, 0.0, -1.0e-10, -22.4486352650389, -1.5707963267949, -22.4486352650389, -1.5707963268949, 22.4486352650389, 1.5707963266949},
        {3.0901699437495e-11, -9.5105651629515e-11, 3.0901699437495e-11, -9.5105651629515e-11, -22.4486352650389, -1.25663706143591, -22.448635265008, -1.25663706153102, 22.4486352650698, 1.25663706134081},
        {9.8768834059514e-11, -1.5643446504023002e-11, 9.8768834059514e-11, -1.5643446504023e-11, -22.4486352650389, -0.157079632679488, -22.4486352649402, -0.157079632695132, 22.4486352651377, 0.157079632663845},
        {0.15, 0.0, 0.149812626514082, 0.0, -1.32552404918277, 0.0, -1.16408641729839, 0.0, 1.46446167052028, 0.0},
        {0.1060660171779825, 0.1060660171779825, 0.106198510172016, 0.105933345197561, -1.31990959342105, 0.779773166034167, -1.21397624822349, 0.897221670932746, 1.42584293861861, -0.684824650588713},
        {0.0463525491562425, 0.14265847744427249, 0.0465043664443717, 0.1427686871506, -1.31535197062462, 1.25332575154654, -1.27825242518864, 1.40248660838809, 1.37065439517488, -1.11739007291224},
        {0.0, 0.15, 0.0, 0.150187626610941, -1.31427404390933, 1.5707963267949, -1.32552404918277, 1.72060895330898, 1.32552404918277, -1.42098370028081},
        {0.0, 0.15, 0.0, 0.150187626610941, -1.31427404390933, 1.5707963267949, -1.32552404918277, 1.72060895330898, 1.32552404918277, -1.42098370028081},
        {-0.1213525491562425, 0.0881677878438705, -0.121410363295163, 0.0879894647931175, -1.32164680474487, 2.51862071457814, -1.43946484971679, 2.59626744276408, 1.19687588593211, -2.41957522097486},
        {-0.15, 0.0, -0.149812626514082, 0.0, -1.32552404918277, 3.14159265358979, -1.46446167052028, 0.0, 1.16408641729839, -3.14159265358979},
        {-0.1213525491562425, -0.0881677878438705, -0.121410363295163, -0.0879894647931175, -1.32164680474487, -2.51862071457814, -1.43946484971679, -2.59626744276408, 1.19687588593211, 2.41957522097486},
        {0.0, -0.15, 0.0, -0.150187626610941, -1.31427404390933, -1.5707963267949, -1.32552404918277, -1.72060895330898, 1.32552404918277, 1.42098370028081},
        {0.0463525491562425, -0.14265847744427249, 0.0465043664443717, -0.1427686871506, -1.31535197062462, -1.25332575154654, -1.27825242518864, -1.40248660838809, 1.37065439517488, 1.11739007291224},
        {0.148153251089271, -0.0234651697560345, 0.147986276837203, -0.0233801359873959, -1.32524974813753, -0.155344509602526, -1.16622995490181, -0.182371337566645, 1.46287076355731, 0.135270572544445},
        {0.25, 0.0, 0.249133570319757, 0.0, -0.824663062580946, 0.0, -0.542543264661914, 0.0, 1.04428263444374, 0.0},
        {0.1767766952966375, 0.1767766952966375, 0.177389351153991, 0.17616173766105, -0.809119386275216, 0.769773219911456, -0.632957648614166, 0.978412458037432, 0.985281123936265, -0.623633755729451},
        {0.0772542485937375, 0.2377641290737875, 0.0779581492943877, 0.238274358309521, -0.796425249249655, 1.24741416450428, -0.745153392294084, 1.50303646097033, 0.898260598498369, -1.02852866129867},
        {0.0, 0.25, 0.0, 0.250869684890912, -0.793412949552826, 1.5707963267949, -0.824663062580946, 1.81992989711465, 0.824663062580946, -1.32166275647514},
        {0.0, 0.25, 0.0, 0.250869684890912, -0.793412949552826, 1.5707963267949, -0.824663062580946, 1.81992989711465, 0.824663062580946, -1.32166275647514},
        {-0.2022542485937375, 0.1469463130731175, -0.20252086544385, 0.146120744825161, -0.813939960005834, 2.52811043072268, -1.00626764691037, 2.64616186234439, 0.60229889383601, -2.35061809970499},
        {-0.25, 0.0, -0.249133570319757, 0.0, -0.824663062580946, 3.14159265358979, -1.04428263444374, 0.0, 0.542543264661914, -3.14159265358979},
        {-0.2022542485937375, -0.1469463130731175, -0.20252086544385, -0.146120744825161, -0.813939960005834, -2.52811043072268, -1.00626764691037, -2.64616186234439, 0.60229889383601, 2.35061809970499},
        {0.0, -0.25, 0.0, -0.250869684890912, -0.793412949552826, -1.5707963267949, -0.824663062580946, -1.81992989711465, 0.824663062580946, 1.32166275647514},
        {0.0772542485937375, -0.2377641290737875, 0.0779581492943877, -0.238274358309521, -0.796425249249655, -1.24741416450428, -0.745153392294084, -1.50303646097033, 0.898260598498369, 1.02852866129867},
        {0.246922085148785, -0.0391086162600575, 0.24614979209014, -0.0387156766342252, -0.823906068503191, -0.152275113509673, -0.546488805945054, -0.201435843693654, 1.04188216592042, 0.122428128357486},
        {1.0, 0.0, 0.946083070367183, 0.0, 0.337403922900968, 0.0, 1.89511781635594, 0.0, 0.21938393439552, 0.0},
        {0.70710678118655, 0.70710678118655, 0.745192155353662, 0.666664817419508, 0.566802098259312, 0.535629617322428, 1.23346691567882, 1.78035886482613, 0.0998627191601961, -0.289974554118806},
        {0.30901699437495, 0.95105651629515, 0.355652074843551, 0.983694298574337, 0.782614772996823, 1.09956193553216, 0.643964830804846, 2.31231301720838, -0.112533957890793, -0.475476714030747},
        {0.0, 1.0, 0.0, 1.05725087537573, 0.837866940980208, 1.5707963267949, 0.337403922900968, 2.51687939716208, -0.337403922900968, -0.624713256427714},
        {0.0, 1.0, 0.0, 1.05725087537573, 0.837866940980208, 1.5707963267949, 0.337403922900968, 2.51687939716208, -0.337403922900968, -0.624713256427714},
        {-0.80901699437495, 0.58778525229247, -0.824526943360603, 0.5349755552469, 0.491722358913221, 2.74478237579885, -0.14431784116889, 2.91012082986304, -1.43603057378731, -1.62893165104155},
        {-1.0, 0.0, -0.946083070367183, 0.0, 0.337403922900968, 3.14159265358979, -0.21938393439552, 0.0, -1.89511781635594, -3.14159265358979},
        {-0.80901699437495, -0.58778525229247, -0.824526943360603, -0.5349755552469, 0.491722358913221, -2.74478237579885, -0.14431784116889, -2.91012082986304, -1.43603057378731, 1.62893165104155},
        {0.0, -1.0, 0.0, -1.05725087537573, 0.837866940980208, -1.5707963267949, 0.337403922900968, -2.51687939716208, -0.337403922900968, 0.624713256427714},
        {0.30901699437495, -0.95105651629515, 0.355652074843551, -0.983694298574337, 0.782614772996823, -1.09956193553216, 0.643964830804846, -2.31231301720838, -0.112533957890793, 0.475476714030747},
        {0.98768834059514, -0.15643446504023, 0.939353669480516, -0.132366326809511, 0.347743692745538, -0.0857637957494435, 1.86192420379474, -0.4235071237, 0.214836056406461, 0.0577866622153682},
        {5.0, 0.0, 1.54993124494467, 0.0, -0.190029749656644, 0.0, 40.1852753558032, 0.0, 0.00114829559127533, 0.0},
        {3.53553390593275, 3.53553390593275, 3.68715086115432, -3.15718137390906, -3.15476810467167, -2.11185029092794, -6.31194947858072, 7.36979747887716, -0.00241326923739065, 0.00450424343148012},
        {1.5450849718747501, 4.75528258147575, 14.299679516973, 6.85221185491562, 6.85257226323722, -12.7303117750282, -0.931350039879264, 2.99045284011251, 0.0356665739529384, 0.0160488285537158},
        {0.0, 5.0, 0.0, 20.0932118256972, 20.0920635301059, 1.5707963267949, -0.190029749656644, 3.12072757173957, 0.190029749656644, -0.0208650818502225},
        {0.0, 5.0, 0.0, 20.0932118256972, 20.0920635301059, 1.5707963267949, -0.190029749656644, 3.12072757173957, 0.190029749656644, -0.0208650818502225},
        {-4.04508497187475, 2.93892626146235, -2.0577013528011, -1.96223940975232, -1.9637046590567, 3.61921566552724, 0.00286020292932927, 3.14261835694337, 6.84905720502975, 11.1883945116728},
        {-5.0, 0.0, -1.54993124494467, 0.0, -0.190029749656644, 3.14159265358979, -0.00114829559127533, 0.0, -40.1852753558032, -3.14159265358979},
        {-4.04508497187475, -2.93892626146235, -2.0577013528011, 1.96223940975232, -1.9637046590567, -3.61921566552724, 0.00286020292932927, -3.14261835694337, 6.84905720502975, -11.1883945116728},
        {0.0, -5.0, 0.0, -20.0932118256972, 20.0920635301059, -1.5707963267949, -0.190029749656644, -3.12072757173957, 0.190029749656644, 0.0208650818502225},
        {1.5450849718747501, -4.75528258147575, 14.299679516973, -6.85221185491562, 6.85257226323722, 12.7303117750282, -0.931350039879264, -2.99045284011251, 0.0356665739529384, -0.0160488285537158},
        {4.9384417029757, -0.7821723252011501, 1.53351371140353, 0.167535111630988, -0.252671967618136, -0.0455545136665558, 31.7637646606649, -20.6127722347705, 0.000742118122850436, 0.000971589948194675},
        {10.0, 0.0, 1.65834759421887, 0.0, -0.0454564330044554, 0.0, 2492.22897624188, 0.0, 4.15696892968532e-6, 0.0},
        {7.0710678118655, 7.0710678118655, -3.77451753034182, 62.6425755592338, 62.6425711229056, 5.34523470197841, 125.285146682139, -7.54895590552534, 4.43632828562146e-6, -7.91551583068017e-5},
        {3.0901699437495003, 9.5105651629515, 303.07292777526, -690.037761260879, -690.037754650298, -301.502129842997, -0.659900725018632, 5.27667742385125, -0.00134856502993308, 0.00415958644984393},
        {0.0, 10.0, 0.0, 1246.11449019942, 1246.11448604245, 1.5707963267949, -0.0454564330044554, 3.22914392101377, 0.0454564330044554, 0.0875512674239774},
        {0.0, 10.0, 0.0, 1246.11449019942, 1246.11448604245, 1.5707963267949, -0.0454564330044554, 3.22914392101377, 0.0454564330044554, 0.0875512674239774},
        {-8.0901699437495, 5.8778525229247, -14.6236949578037, 13.4643508624518, 13.4645870261785, 16.1946084513107, -2.79815608075126e-5, 3.14158769865141, -157.085481478947, -317.2439811058},
        {-10.0, 0.0, -1.65834759421887, 0.0, -0.0454564330044554, 3.14159265358979, -4.15696892968532e-6, 0.0, -2492.22897624188, -3.14159265358979},
        {-8.0901699437495, -5.8778525229247, -14.6236949578037, -13.4643508624518, 13.4645870261785, -16.1946084513107, -2.79815608075126e-5, -3.14158769865141, -157.085481478947, 317.2439811058},
        {0.0, -10.0, 0.0, -1246.11449019942, 1246.11448604245, -1.5707963267949, -0.0454564330044554, -3.22914392101377, 0.0454564330044554, -0.0875512674239774},
        {3.0901699437495003, -9.5105651629515, 303.07292777526, 690.037761260879, -690.037754650298, 301.502129842997, -0.659900725018632, -5.27667742385125, -0.00134856502993308, -0.00415958644984393},
        {9.8768834059514, -1.5643446504023002, 1.78956084261706, 0.114701769782499, -0.118816490702582, 0.198823504802007, 411.904076239608, -2157.22483235914, -6.48699583272709e-7, 4.66032253043785e-6},
        {25.0, 0.0, 1.53148255099996, 0.0, -0.00684859717970259, 0.0, 3005950906.52555, 0.0, 5.34889975534022e-13, 0.0},
        {17.67766952966375, 17.67766952966375, -894423.548678786, -396595.979622699, -396595.9796227, 894425.119475113, -793191.959245399, -1788847.09735757, 7.48981460647877e-10, 3.27816276287981e-10},
        {7.72542485937375, 23.77641290737875, 395787595.545024, 194501516.12134, 194501516.12134, -395787593.974227, -80.7948153607822, -39.8888851700048, 1.72503667797818e-5, 2.36415887840135e-6},
        {0.0, 25.0, 0.0, 1502975453.26277, 1502975453.26277, 1.5707963267949, -0.00684859717970259, 3.10227887779486, 0.00684859717970259, -0.0393137757949353},
        {0.0, 25.0, 0.0, 1502975453.26277, 1502975453.26277, 1.5707963267949, -0.00684859717970259, 3.10227887779486, 0.00684859717970259, -0.0393137757949353},
        {-20.22542485937375, 14.69463130731175, -19129.3494470458, 45406.0213041107, 45406.0213041213, 19130.9202433848, 5.85665949258649e-11, 3.14159265356458, -2432061.38760638, 25010638.0968068},
        {-25.0, 0.0, -1.53148255099996, 0.0, -0.00684859717970259, 3.14159265358979, -5.34889975534022e-13, 0.0, -3005950906.52555, -3.14159265358979},
        {-20.22542485937375, -14.69463130731175, -19129.3494470458, -45406.0213041107, 45406.0213041213, -19130.9202433848, 5.85665949258649e-11, -3.14159265356458, -2432061.38760638, -25010638.0968068},
        {0.0, -25.0, 0.0, -1502975453.26277, 1502975453.26277, -1.5707963267949, -0.00684859717970259, -3.10227887779486, 0.00684859717970259, 0.0393137757949353},
        {7.72542485937375, -23.77641290737875, 395787595.545024, -194501516.12134, 194501516.12134, 395787593.974227, -80.7948153607822, 39.8888851700048, 1.72503667797818e-5, -2.36415887840135e-6},
        {24.6922085148785, -3.91086162600575, 0.61973692887531, 0.318459426938049, -0.318931296543192, -0.950420524151913, -1816162045.63054, 1255955799.5082, -4.40593065675657e-13, -5.79490191675286e-13},
        {50.0, 0.0, 1.55161707248594, 0.0, -0.00562838632411631, 0.0, 1.05856368971317e+20, 0.0, 3.78326402955046e-24, 0.0},
        {35.3553390593275, 35.3553390593275, 53807668130.5995, -22948660925283.2, -22948660925283.2, -53807668129.0287, -45897321850566.4, 107615336261.199, -9.9766761181828e-21, 8.71502630154959e-18},
        {15.4508497187475, 47.5528258147575, 2.49903843573354e+18, -3.83240358282137e+18, -3.83240358282137e+18, -2.49903843573354e+18, -68343.3715391731, 77339.6040605891, 3.71621275609622e-10, 3.85406628982992e-9},
        {0.0, 50.0, 0.0, 5.29281844856585e+19, 5.29281844856585e+19, 1.5707963267949, -0.00562838632411631, 3.12241339928083, 0.00562838632411631, -0.0191792543089607},
        {0.0, 50.0, 0.0, 5.29281844856585e+19, 5.29281844856585e+19, 1.5707963267949, -0.00562838632411631, 3.12241339928083, 0.00562838632411631, -0.0191792543089607},
        {-40.4508497187475, 29.3892626146235, -57258797567.9644, -12906669326.6389, -12906669326.6389, 57258797569.5352, -8.55226617604501e-21, 3.14159265358979, 6.68228261723918e+15, -3.43017053184612e+15},
        {-50.0, 0.0, -1.55161707248594, 0.0, -0.00562838632411631, 3.14159265358979, -3.78326402955046e-24, 0.0, -1.05856368971317e+20, -3.14159265358979},
        {-40.4508497187475, -29.3892626146235, -57258797567.9644, 12906669326.6389, -12906669326.6389, -57258797569.5352, -8.55226617604501e-21, -3.14159265358979, 6.68228261723918e+15, 3.43017053184612e+15},
        {0.0, -50.0, 0.0, -5.29281844856585e+19, 5.29281844856585e+19, -1.5707963267949, -0.00562838632411631, -3.12241339928083, 0.00562838632411631, 0.0191792543089607},
        {15.4508497187475, -47.5528258147575, 2.49903843573354e+18, 3.83240358282137e+18, -3.83240358282137e+18, 2.49903843573354e+18, -68343.3715391731, -77339.6040605891, 3.71621275609622e-10, -3.85406628982992e-9},
        {49.384417029757, -7.8217232520115, -16.8292457944994, 16.9326906903424, -16.9326976506474, -18.4000381995002, 1.09489979806082e+19, -5.61228684199658e+19, -8.51344869310291e-25, 6.95142343223447e-24},
        {700.0, 0.0, 1.57199393223749, 0.0, 0.000778810012739756, 0.0, 1.45097873605256e+301, 0.0, 1.40651876623403e-307, 0.0},
        {494.974746830585, 494.974746830585, -5.39480977313549e+211, -3.7907051625115e+211, -3.7907051625115e+211, 5.39480977313549e+211, -7.58141032502299e+211, -1.0789619546271e+212, 1.26627531288803e-218, 8.89746644202181e-219},
        {216.311896062465, 665.7395614066049, 6.68861022474796e+285, -6.86204916856497e+285, -6.86204916856497e+285, -6.68861022474796e+285, 4.35129688126332e+89, -1.25283433405018e+91, 9.10599247691995e-98, -1.3494793845188e-97},
        {0.0, 700.0, 0.0, 7.2548936802628e+300, 7.2548936802628e+300, 1.5707963267949, 0.000778810012739756, 3.14279025903239, -0.000778810012739756, 0.00119760544259495},
        {0.0, 700.0, 0.0, 7.2548936802628e+300, 7.2548936802628e+300, 1.5707963267949, 0.000778810012739756, 3.14279025903239, -0.000778810012739756, 0.00119760544259495},
        {-566.311896062465, 411.449676604729, 4.13964135191794e+174, 3.47943069430311e+175, 3.47943069430311e+175, -4.13964135191794e+174, 1.39494929258574e-249, 3.14159265358979, 9.43022777090499e+242, 8.40743888884655e+242},
        {-700.0, 0.0, -1.57199393223749, 0.0, 0.000778810012739756, 3.14159265358979, -1.40651876623403e-307, 0.0, -1.45097873605256e+301, -3.14159265358979},
        {-566.311896062465, -411.449676604729, 4.13964135191794e+174, -3.47943069430311e+175, 3.47943069430311e+175, 4.13964135191794e+174, 1.39494929258574e-249, -3.14159265358979, 9.43022777090499e+242, -8.40743888884655e+242},
        {0.0, -700.0, 0.0, -7.2548936802628e+300, 7.2548936802628e+300, -1.5707963267949, 0.000778810012739756, -3.14279025903239, -0.000778810012739756, -0.00119760544259495},
        {216.311896062465, -665.7395614066049, 6.68861022474796e+285, 6.86204916856497e+285, -6.86204916856497e+285, 6.68861022474796e+285, 4.35129688126332e+89, 1.25283433405018e+91, 9.10599247691995e-98, 1.3494793845188e-97},
        {691.381838416598, -109.50412552816101, -2.38570018769502e+44, -9.72638025849046e+43, 9.72638025849046e+43, -2.38570018769502e+44, -2.15172979114587e+297, -1.50043260461905e+297, -7.44435180959991e-304, 2.26013762375079e-304}
    };

    constexpr double tol = 100*QL_EPSILON;

    for (const auto& i : data) {
        const Real x = i[0];
        const Real y = (std::abs(i[1]) < 1e-12) ? 0.0 : i[1];
        const std::complex<Real> z(x, y);

        const std::complex<Real> si = Si(z);
        std::complex<Real> ref(i[2], i[3]);
        Real diff = std::abs(si-ref)/std::abs(ref);
        if (diff > tol || std::isnan(diff)
            || (std::abs(ref.real()) < tol && std::abs(si.real()) > tol)
            || (std::abs(ref.imag()) < tol && std::abs(si.imag()) > tol)) {
            reportSiCiFail("Si", z, si, ref, diff, tol);
        }

        const std::complex<Real> ci = Ci(z);
        ref = std::complex<Real>(i[4], i[5]);
        diff = std::min(std::abs(ci-ref), std::abs(ci-ref)/std::abs(ref));
        if (diff > tol || std::isnan(diff)
            || (std::abs(ref.real()) < tol && std::abs(ci.real()) > tol)
            || (std::abs(ref.imag()) < tol && std::abs(ci.imag()) > tol)) {
            reportSiCiFail("Ci", z, ci, ref, diff, tol);
        }

        const std::complex<Real> ei = Ei(z);
        ref = std::complex<Real>(i[6], i[7]);
        diff = std::abs(ei-ref)/std::abs(ref);
        if (diff > tol || std::isnan(diff)
            || (std::abs(ref.real()) < tol && std::abs(ei.real()) > tol)
            || (std::abs(ref.imag()) < tol && std::abs(ei.imag()) > tol)) {
            reportSiCiFail("Ei", z, ei, ref, diff, tol);
        }

        const std::complex<Real> e1 = E1(z);
        ref = std::complex<Real>(i[8], i[9]);
        diff = std::abs(e1-ref)/std::abs(ref);
        if (diff > 10*tol || std::isnan(diff)
            || (std::abs(ref.real()) < tol && std::abs(e1.real()) > tol)
            || (std::abs(ref.imag()) < tol && std::abs(e1.imag()) > tol)) {
            reportSiCiFail("E1", z, e1, ref, diff, tol);
        }
    }
}

BOOST_AUTO_TEST_CASE(testRealSiCiIntegrals) {
    BOOST_TEST_MESSAGE("Testing real Ci and Si...");

    using namespace ExponentialIntegral;

    // reference values are calculated with Mathematica or Python/mpmath
    const Real data[][3] = {
            {1e-12, 1e-12, -27.0538054510270153677},
            {0.1, 0.09994446110827695570, -1.7278683866572965838},
            {1.0, 0.9460830703671830149, 0.3374039229009681347},
            {1.9999, 1.6053675097543679041, 0.4230016343635392},
            {3.9999, 1.758222058430840841, -0.140965355646150101},
            {4.0001, 1.758184218306157867, -0.140998037827177150},
            {5.0, 1.5499312449446741373, -0.19002974965664387862},
            {7.0, 1.4545966142480935906, 0.076695278482184518383,},
            {10.0, 1.6583475942188740493, -0.045456433004455372635},
            {15.0, 1.6181944437083687391, 0.046278677674360439604},
            {20.0, 1.5482417010434398402, 0.04441982084535331654},
            {24.9, 1.532210740207620024, -0.010788215638781789846},
            {25.1, 1.5311526281483412938, -0.0028719014454227088097},
            {30.0, 1.566756540030351111, -0.033032417282071143779},
            {40.0, 1.5869851193547845068, 0.019020007896208766962},
            {400.0, 1.5721148692738117518, -0.00212398883084634893},
            {4000.0, 1.5709788562309441985, -0.00017083030544201591130}
    };


    const Real tol = 1e-12;

    for (const auto& i : data) {
        Real x = i[0];
        Real si = Si(x);

        Real diff = std::fabs(si - i[1]);
        if (diff > tol) {
            reportSiCiFail("SineIntegral", x, si, i[1], diff, tol);
        }

        const Real ci = Ci(x);
        diff = std::fabs(ci - i[2]);
        if (diff > tol) {
            reportSiCiFail("CosineIntegral", x, ci, i[2], diff, tol);
        }

        x = -i[0];
        si = Si(x);
        diff = std::fabs(si + i[1]);
        if (diff > tol) {
            reportSiCiFail("SineIntegral", x, si, Real(-i[1]), diff, tol);
        }
    }
}

BOOST_AUTO_TEST_CASE(testExponentialIntegralLimits) {
    BOOST_TEST_MESSAGE("Testing limits for Ei...");

    using namespace ExponentialIntegral;

    const Real largeValue = 0.75*std::log(0.1*QL_MAX_REAL);

    const std::complex<Real> largeValuePosImag =
        Ei(std::complex<Real>(largeValue, std::numeric_limits<Real>::min()));

    constexpr double tol = 1000*QL_EPSILON;

    QL_CHECK_CLOSE(largeValuePosImag.imag(), M_PI, tol);

    QL_CHECK_CLOSE(
        largeValuePosImag.real(), std::exp(largeValue)/largeValue, 1e3/largeValue);

    const std::complex<Real> largeValueNegImag =
        Ei(std::complex<Real>(largeValue, -std::numeric_limits<Real>::min()));

    QL_CHECK_CLOSE(largeValueNegImag.imag(), -M_PI, tol);
    QL_CHECK_CLOSE(
        largeValueNegImag.real(), std::exp(largeValue)/largeValue, 1e3/largeValue);

    const std::complex<Real> largeValueZeroImag =
        Ei(std::complex<Real>(largeValue));
    BOOST_CHECK(largeValueZeroImag.imag() == Real(0.0));

    if (std::numeric_limits<Real>::has_infinity) {
        const std::complex<Real> ei_0 = Ei(std::complex<Real>(0.0));
        BOOST_CHECK(
            ei_0 == std::complex<Real>(-std::numeric_limits<Real>::infinity()));
    }

    constexpr double smallR = QL_EPSILON*QL_EPSILON;
    for (Integer x = -100; x < 100; ++x) {
        const Real phi = x/100.0 * M_PI;
        const std::complex<Real> z = std::polar(smallR, phi);
        const std::complex<Real> ei = Ei(z);

        // principal branch
        const std::complex<Real> limit_ei = M_EULER_MASCHERONI + std::log(z);

        QL_CHECK_CLOSE(ei.real(), limit_ei.real(), tol);
        QL_CHECK_CLOSE(ei.imag(), limit_ei.imag(), tol);
    }

    const Real largeR = largeValue;
    for (Integer x = -10; x < 10; ++x) {
        const Real phi = x/10.0 * M_PI;
        if (std::abs(phi) > 0.5*M_PI) {
            const std::complex<Real> z = std::polar(largeR, phi);
            const std::complex<Real> ei = Ei(z);

            const Real limit_ei_imag = boost::math::sign(z.imag())*M_PI;
            BOOST_CHECK(close_enough(ei.real(), 0.0));
            QL_CHECK_CLOSE(ei.imag(), limit_ei_imag, tol);
        }
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()