File: libormarketmodelprocess.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (327 lines) | stat: -rw-r--r-- 13,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2005, 2006 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/indexes/ibor/euribor.hpp>
#include <ql/legacy/libormarketmodels/lfmhullwhiteparam.hpp>
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/statistics/generalstatistics.hpp>
#include <ql/methods/montecarlo/multipathgenerator.hpp>
#include <ql/termstructures/volatility/optionlet/capletvariancecurve.hpp>
#include <ql/termstructures/volatility/optionlet/constantoptionletvol.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/time/daycounters/actual360.hpp>
#include <ql/time/daycounters/actualactual.hpp>
#include <ql/timegrid.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(LiborMarketModelProcessTests)

Size len = 10;

ext::shared_ptr<IborIndex> makeIndex() {
    DayCounter dayCounter = Actual360();
    std::vector<Date> dates = {{4,September,2005}, {4,September,2018}};
    std::vector<Rate> rates = {0.01, 0.08};

    RelinkableHandle<YieldTermStructure> termStructure(
                      ext::shared_ptr<YieldTermStructure>(
                                      new ZeroCurve(dates,rates,dayCounter)));

    ext::shared_ptr<IborIndex> index(new Euribor1Y(termStructure));

    Date todaysDate =
        index->fixingCalendar().adjust(Date(4,September,2005));
    Settings::instance().evaluationDate() = todaysDate;

    dates[0] = index->fixingCalendar().advance(todaysDate,
                                               index->fixingDays(), Days);

    termStructure.linkTo(ext::shared_ptr<YieldTermStructure>(
                                    new ZeroCurve(dates, rates, dayCounter)));

    return index;
}

ext::shared_ptr<CapletVarianceCurve>
makeCapVolCurve(const Date& todaysDate) {
    Volatility vols[] = {14.40, 17.15, 16.81, 16.64, 16.17,
                         15.78, 15.40, 15.21, 14.86, 14.54};

    std::vector<Date> dates;
    std::vector<Volatility> capletVols;
    ext::shared_ptr<LiborForwardModelProcess> process(
                            new LiborForwardModelProcess(len+1, makeIndex()));

    for (Size i=0; i < len; ++i) {
        capletVols.push_back(vols[i]/100);
        dates.push_back(process->fixingDates()[i+1]);
    }

    return ext::make_shared<CapletVarianceCurve>(todaysDate, dates, capletVols,
                                                 ActualActual(ActualActual::ISDA));
}

ext::shared_ptr<LiborForwardModelProcess>
makeProcess(const Matrix& volaComp = Matrix()) {
    Size factors = (volaComp.empty() ? 1 : volaComp.columns());

    ext::shared_ptr<IborIndex> index = makeIndex();
    ext::shared_ptr<LiborForwardModelProcess> process(
                                    new LiborForwardModelProcess(len, index));

    ext::shared_ptr<LfmCovarianceParameterization> fct(
                new LfmHullWhiteParameterization(
                    process,
                    makeCapVolCurve(Settings::instance().evaluationDate()),
                    volaComp * transpose(volaComp), factors));

    process->setCovarParam(fct);

    return process;
}


BOOST_AUTO_TEST_CASE(testInitialisation) {
    BOOST_TEST_MESSAGE("Testing caplet LMM process initialisation...");

    DayCounter dayCounter = Actual360();
    RelinkableHandle<YieldTermStructure> termStructure(
        flatRate(Date::todaysDate(), 0.04, dayCounter));

    ext::shared_ptr<IborIndex> index(new Euribor6M(termStructure));
    ext::shared_ptr<OptionletVolatilityStructure> capletVol(new
        ConstantOptionletVolatility(termStructure->referenceDate(),
                                    termStructure->calendar(),
                                    Following,
                                    0.2,
                                    termStructure->dayCounter()));

    Calendar calendar = index->fixingCalendar();

    for (Integer daysOffset=0; daysOffset < 1825 /* 5 year*/; daysOffset+=8) {
        Date todaysDate = calendar.adjust(Date::todaysDate()+daysOffset);
        Settings::instance().evaluationDate() = todaysDate;
        Date settlementDate =
            calendar.advance(todaysDate, index->fixingDays(), Days);

        termStructure.linkTo(flatRate(settlementDate, 0.04, dayCounter));

        LiborForwardModelProcess process(60, index);

        const std::vector<Time>& fixings = process.fixingTimes();
        for (Size i=1; i < fixings.size()-1; ++i) {
            Size ileft  = process.nextIndexReset(fixings[i]-0.000001);
            Size iright = process.nextIndexReset(fixings[i]+0.000001);
            Size ii     = process.nextIndexReset(fixings[i]);

            if ((ileft != i) || (iright != i+1) || (ii != i+1)) {
                BOOST_ERROR("Failed to next index resets");
            }
        }

    }
}

BOOST_AUTO_TEST_CASE(testLambdaBootstrapping) {
    BOOST_TEST_MESSAGE("Testing caplet LMM lambda bootstrapping...");

    Real tolerance = 1e-10;
    Volatility lambdaExpected[]= {14.3010297550, 19.3821411939, 15.9816590141,
                                  15.9953118303, 14.0570815635, 13.5687599894,
                                  12.7477197786, 13.7056638165, 11.6191989567};

    ext::shared_ptr<LiborForwardModelProcess> process = makeProcess();

    Matrix covar = process->covariance(0.0, {}, 1.0);

    for (Size i=0; i<9; ++i) {
        const Real calculated = std::sqrt(covar[i+1][i+1]);
        const Real expected   = lambdaExpected[i]/100;

        if (std::fabs(calculated - expected) > tolerance)
            BOOST_ERROR("Failed to reproduce expected lambda values"
                        << "\n    calculated: " << calculated
                        << "\n    expected:   " << expected);
    }

    ext::shared_ptr<LfmCovarianceParameterization> param =
        process->covarParam();

    std::vector<Time> tmp = process->fixingTimes();
    TimeGrid grid(tmp.begin(), tmp.end(), 14);

    for (Real t : grid) {
        Matrix diff = (param->integratedCovariance(t) -
                       param->LfmCovarianceParameterization::integratedCovariance(t));

        for (Size i=0; i<diff.rows(); ++i) {
            for (Size j=0; j<diff.columns(); ++j) {
                if (std::fabs(diff[i][j]) > tolerance) {
                     BOOST_FAIL("Failed to reproduce integrated covariance" <<
                        "\n    i: " << i <<
                        "\n    j: " << j <<
                        "\nerror: " << diff[i][j]);
                }
            }
        }
    }
}

BOOST_AUTO_TEST_CASE(testMonteCarloCapletPricing, *precondition(if_speed(Fast))) {
    BOOST_TEST_MESSAGE("Testing caplet LMM Monte-Carlo caplet pricing...");

    /* factor loadings are taken from Hull & White article
       plus extra normalisation to get orthogonal eigenvectors
       http://www.rotman.utoronto.ca/~amackay/fin/libormktmodel2.pdf */
    Real compValues[] = {0.85549771, 0.46707264, 0.22353259,
                         0.91915359, 0.37716089, 0.11360610,
                         0.96438280, 0.26413316,-0.01412414,
                         0.97939148, 0.13492952,-0.15028753,
                         0.95970595,-0.00000000,-0.28100621,
                         0.97939148,-0.13492952,-0.15028753,
                         0.96438280,-0.26413316,-0.01412414,
                         0.91915359,-0.37716089, 0.11360610,
                         0.85549771,-0.46707264, 0.22353259};

    Matrix volaComp(9,3);
    std::copy(compValues, compValues+9*3, volaComp.begin());

    ext::shared_ptr<LiborForwardModelProcess> process1 = makeProcess();
    ext::shared_ptr<LiborForwardModelProcess> process2 = makeProcess(
                                                                    volaComp);
    std::vector<Time> tmp = process1->fixingTimes();
    TimeGrid grid(tmp.begin(), tmp.end(),12);

    Size i;
    std::vector<Size> location;
    for (i=0; i < tmp.size(); ++i) {
        location.push_back(
                      std::find(grid.begin(),grid.end(),tmp[i])-grid.begin());
    }

    // set-up a small Monte-Carlo simulation to price caplets
    // and ratchet caps using a one- and a three factor libor market model
    typedef LowDiscrepancy::rsg_type rsg_type;
    typedef MultiPathGenerator<rsg_type>::sample_type sample_type;

    BigNatural seed = 42;
    rsg_type rsg1 = LowDiscrepancy::make_sequence_generator(
                            process1->factors()*(grid.size()-1), seed);
    rsg_type rsg2 = LowDiscrepancy::make_sequence_generator(
                            process2->factors()*(grid.size()-1), seed);
    MultiPathGenerator<rsg_type> generator1(process1, grid, rsg1, false);
    MultiPathGenerator<rsg_type> generator2(process2, grid, rsg2, false);

    const Size nrTrails = 250000;
    std::vector<GeneralStatistics> stat1(process1->size());
    std::vector<GeneralStatistics> stat2(process2->size());
    std::vector<GeneralStatistics> stat3(process2->size()-1);
    for (i=0; i<nrTrails; ++i) {
        sample_type path1 = generator1.next();
        sample_type path2 = generator2.next();

        std::vector<Rate> rates1(len);
        std::vector<Rate> rates2(len);
        for (Size j=0; j<process1->size(); ++j) {
            rates1[j] = path1.value[j][location[j]];
            rates2[j] = path2.value[j][location[j]];
        }

        std::vector<DiscountFactor> dis1 = process1->discountBond(rates1);
        std::vector<DiscountFactor> dis2 = process2->discountBond(rates2);

        for (Size k=0; k<process1->size(); ++k) {
            Real accrualPeriod =  process1->accrualEndTimes()[k]
                                - process1->accrualStartTimes()[k];
            // caplet payoff function, cap rate at 4%
            Real payoff1 = std::max(rates1[k] - 0.04, 0.0) * accrualPeriod;

            Real payoff2 = std::max(rates2[k] - 0.04, 0.0) * accrualPeriod;
            stat1[k].add(dis1[k] * payoff1);
            stat2[k].add(dis2[k] * payoff2);

            if (k != 0) {
                // ratchet cap payoff function
                Real payoff3 =  std::max(rates2[k] - (rates2[k-1]+0.0025), 0.0)
                              * accrualPeriod;
                stat3[k-1].add(dis2[k] * payoff3);
            }
        }

    }

    Real capletNpv[] = {0.000000000000, 0.000002841629, 0.002533279333,
                        0.009577143571, 0.017746502618, 0.025216116835,
                        0.031608230268, 0.036645683881, 0.039792254012,
                        0.041829864365};

    Real ratchetNpv[] = {0.0082644895, 0.0082754754, 0.0082159966,
                         0.0082982822, 0.0083803357, 0.0084366961,
                         0.0084173270, 0.0081803406, 0.0079533814};

    for (Size k=0; k < process1->size(); ++k) {

        Real calculated1 = stat1[k].mean();
        Real tolerance1  = stat1[k].errorEstimate();
        Real expected    = capletNpv[k];

        if (std::fabs(calculated1 - expected) > tolerance1) {
            BOOST_ERROR("Failed to reproduce expected caplet NPV"
                        << "\n    calculated: " << calculated1
                        << "\n    error int:  " << tolerance1
                        << "\n    expected:   " << expected);
        }

        Real calculated2 = stat2[k].mean();
        Real tolerance2  = stat2[k].errorEstimate();

        if (std::fabs(calculated2 - expected) > tolerance2) {
            BOOST_ERROR("Failed to reproduce expected caplet NPV"
                        << "\n    calculated: " << calculated2
                        << "\n    error int:  " << tolerance2
                        << "\n    expected:   " << expected);
        }

        if (k != 0) {
            Real calculated3 = stat3[k-1].mean();
            Real tolerance3  = stat3[k-1].errorEstimate();
            expected    = ratchetNpv[k-1];

            Real refError = 1e-5; // 1e-5. error bars of the reference values

            if (std::fabs(calculated3 - expected) > tolerance3 + refError) {
                BOOST_ERROR("Failed to reproduce expected caplet NPV"
                            << "\n    calculated: " << calculated3
                            << "\n    error int:  " << tolerance3 + refError
                            << "\n    expected:   " << expected);
            }
        }
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()