1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2006 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/indexes/ibor/euribor.hpp>
#include <ql/legacy/libormarketmodels/lfmhullwhiteparam.hpp>
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/statistics/generalstatistics.hpp>
#include <ql/methods/montecarlo/multipathgenerator.hpp>
#include <ql/termstructures/volatility/optionlet/capletvariancecurve.hpp>
#include <ql/termstructures/volatility/optionlet/constantoptionletvol.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/time/daycounters/actual360.hpp>
#include <ql/time/daycounters/actualactual.hpp>
#include <ql/timegrid.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(LiborMarketModelProcessTests)
Size len = 10;
ext::shared_ptr<IborIndex> makeIndex() {
DayCounter dayCounter = Actual360();
std::vector<Date> dates = {{4,September,2005}, {4,September,2018}};
std::vector<Rate> rates = {0.01, 0.08};
RelinkableHandle<YieldTermStructure> termStructure(
ext::shared_ptr<YieldTermStructure>(
new ZeroCurve(dates,rates,dayCounter)));
ext::shared_ptr<IborIndex> index(new Euribor1Y(termStructure));
Date todaysDate =
index->fixingCalendar().adjust(Date(4,September,2005));
Settings::instance().evaluationDate() = todaysDate;
dates[0] = index->fixingCalendar().advance(todaysDate,
index->fixingDays(), Days);
termStructure.linkTo(ext::shared_ptr<YieldTermStructure>(
new ZeroCurve(dates, rates, dayCounter)));
return index;
}
ext::shared_ptr<CapletVarianceCurve>
makeCapVolCurve(const Date& todaysDate) {
Volatility vols[] = {14.40, 17.15, 16.81, 16.64, 16.17,
15.78, 15.40, 15.21, 14.86, 14.54};
std::vector<Date> dates;
std::vector<Volatility> capletVols;
ext::shared_ptr<LiborForwardModelProcess> process(
new LiborForwardModelProcess(len+1, makeIndex()));
for (Size i=0; i < len; ++i) {
capletVols.push_back(vols[i]/100);
dates.push_back(process->fixingDates()[i+1]);
}
return ext::make_shared<CapletVarianceCurve>(todaysDate, dates, capletVols,
ActualActual(ActualActual::ISDA));
}
ext::shared_ptr<LiborForwardModelProcess>
makeProcess(const Matrix& volaComp = Matrix()) {
Size factors = (volaComp.empty() ? 1 : volaComp.columns());
ext::shared_ptr<IborIndex> index = makeIndex();
ext::shared_ptr<LiborForwardModelProcess> process(
new LiborForwardModelProcess(len, index));
ext::shared_ptr<LfmCovarianceParameterization> fct(
new LfmHullWhiteParameterization(
process,
makeCapVolCurve(Settings::instance().evaluationDate()),
volaComp * transpose(volaComp), factors));
process->setCovarParam(fct);
return process;
}
BOOST_AUTO_TEST_CASE(testInitialisation) {
BOOST_TEST_MESSAGE("Testing caplet LMM process initialisation...");
DayCounter dayCounter = Actual360();
RelinkableHandle<YieldTermStructure> termStructure(
flatRate(Date::todaysDate(), 0.04, dayCounter));
ext::shared_ptr<IborIndex> index(new Euribor6M(termStructure));
ext::shared_ptr<OptionletVolatilityStructure> capletVol(new
ConstantOptionletVolatility(termStructure->referenceDate(),
termStructure->calendar(),
Following,
0.2,
termStructure->dayCounter()));
Calendar calendar = index->fixingCalendar();
for (Integer daysOffset=0; daysOffset < 1825 /* 5 year*/; daysOffset+=8) {
Date todaysDate = calendar.adjust(Date::todaysDate()+daysOffset);
Settings::instance().evaluationDate() = todaysDate;
Date settlementDate =
calendar.advance(todaysDate, index->fixingDays(), Days);
termStructure.linkTo(flatRate(settlementDate, 0.04, dayCounter));
LiborForwardModelProcess process(60, index);
const std::vector<Time>& fixings = process.fixingTimes();
for (Size i=1; i < fixings.size()-1; ++i) {
Size ileft = process.nextIndexReset(fixings[i]-0.000001);
Size iright = process.nextIndexReset(fixings[i]+0.000001);
Size ii = process.nextIndexReset(fixings[i]);
if ((ileft != i) || (iright != i+1) || (ii != i+1)) {
BOOST_ERROR("Failed to next index resets");
}
}
}
}
BOOST_AUTO_TEST_CASE(testLambdaBootstrapping) {
BOOST_TEST_MESSAGE("Testing caplet LMM lambda bootstrapping...");
Real tolerance = 1e-10;
Volatility lambdaExpected[]= {14.3010297550, 19.3821411939, 15.9816590141,
15.9953118303, 14.0570815635, 13.5687599894,
12.7477197786, 13.7056638165, 11.6191989567};
ext::shared_ptr<LiborForwardModelProcess> process = makeProcess();
Matrix covar = process->covariance(0.0, {}, 1.0);
for (Size i=0; i<9; ++i) {
const Real calculated = std::sqrt(covar[i+1][i+1]);
const Real expected = lambdaExpected[i]/100;
if (std::fabs(calculated - expected) > tolerance)
BOOST_ERROR("Failed to reproduce expected lambda values"
<< "\n calculated: " << calculated
<< "\n expected: " << expected);
}
ext::shared_ptr<LfmCovarianceParameterization> param =
process->covarParam();
std::vector<Time> tmp = process->fixingTimes();
TimeGrid grid(tmp.begin(), tmp.end(), 14);
for (Real t : grid) {
Matrix diff = (param->integratedCovariance(t) -
param->LfmCovarianceParameterization::integratedCovariance(t));
for (Size i=0; i<diff.rows(); ++i) {
for (Size j=0; j<diff.columns(); ++j) {
if (std::fabs(diff[i][j]) > tolerance) {
BOOST_FAIL("Failed to reproduce integrated covariance" <<
"\n i: " << i <<
"\n j: " << j <<
"\nerror: " << diff[i][j]);
}
}
}
}
}
BOOST_AUTO_TEST_CASE(testMonteCarloCapletPricing, *precondition(if_speed(Fast))) {
BOOST_TEST_MESSAGE("Testing caplet LMM Monte-Carlo caplet pricing...");
/* factor loadings are taken from Hull & White article
plus extra normalisation to get orthogonal eigenvectors
http://www.rotman.utoronto.ca/~amackay/fin/libormktmodel2.pdf */
Real compValues[] = {0.85549771, 0.46707264, 0.22353259,
0.91915359, 0.37716089, 0.11360610,
0.96438280, 0.26413316,-0.01412414,
0.97939148, 0.13492952,-0.15028753,
0.95970595,-0.00000000,-0.28100621,
0.97939148,-0.13492952,-0.15028753,
0.96438280,-0.26413316,-0.01412414,
0.91915359,-0.37716089, 0.11360610,
0.85549771,-0.46707264, 0.22353259};
Matrix volaComp(9,3);
std::copy(compValues, compValues+9*3, volaComp.begin());
ext::shared_ptr<LiborForwardModelProcess> process1 = makeProcess();
ext::shared_ptr<LiborForwardModelProcess> process2 = makeProcess(
volaComp);
std::vector<Time> tmp = process1->fixingTimes();
TimeGrid grid(tmp.begin(), tmp.end(),12);
Size i;
std::vector<Size> location;
for (i=0; i < tmp.size(); ++i) {
location.push_back(
std::find(grid.begin(),grid.end(),tmp[i])-grid.begin());
}
// set-up a small Monte-Carlo simulation to price caplets
// and ratchet caps using a one- and a three factor libor market model
typedef LowDiscrepancy::rsg_type rsg_type;
typedef MultiPathGenerator<rsg_type>::sample_type sample_type;
BigNatural seed = 42;
rsg_type rsg1 = LowDiscrepancy::make_sequence_generator(
process1->factors()*(grid.size()-1), seed);
rsg_type rsg2 = LowDiscrepancy::make_sequence_generator(
process2->factors()*(grid.size()-1), seed);
MultiPathGenerator<rsg_type> generator1(process1, grid, rsg1, false);
MultiPathGenerator<rsg_type> generator2(process2, grid, rsg2, false);
const Size nrTrails = 250000;
std::vector<GeneralStatistics> stat1(process1->size());
std::vector<GeneralStatistics> stat2(process2->size());
std::vector<GeneralStatistics> stat3(process2->size()-1);
for (i=0; i<nrTrails; ++i) {
sample_type path1 = generator1.next();
sample_type path2 = generator2.next();
std::vector<Rate> rates1(len);
std::vector<Rate> rates2(len);
for (Size j=0; j<process1->size(); ++j) {
rates1[j] = path1.value[j][location[j]];
rates2[j] = path2.value[j][location[j]];
}
std::vector<DiscountFactor> dis1 = process1->discountBond(rates1);
std::vector<DiscountFactor> dis2 = process2->discountBond(rates2);
for (Size k=0; k<process1->size(); ++k) {
Real accrualPeriod = process1->accrualEndTimes()[k]
- process1->accrualStartTimes()[k];
// caplet payoff function, cap rate at 4%
Real payoff1 = std::max(rates1[k] - 0.04, 0.0) * accrualPeriod;
Real payoff2 = std::max(rates2[k] - 0.04, 0.0) * accrualPeriod;
stat1[k].add(dis1[k] * payoff1);
stat2[k].add(dis2[k] * payoff2);
if (k != 0) {
// ratchet cap payoff function
Real payoff3 = std::max(rates2[k] - (rates2[k-1]+0.0025), 0.0)
* accrualPeriod;
stat3[k-1].add(dis2[k] * payoff3);
}
}
}
Real capletNpv[] = {0.000000000000, 0.000002841629, 0.002533279333,
0.009577143571, 0.017746502618, 0.025216116835,
0.031608230268, 0.036645683881, 0.039792254012,
0.041829864365};
Real ratchetNpv[] = {0.0082644895, 0.0082754754, 0.0082159966,
0.0082982822, 0.0083803357, 0.0084366961,
0.0084173270, 0.0081803406, 0.0079533814};
for (Size k=0; k < process1->size(); ++k) {
Real calculated1 = stat1[k].mean();
Real tolerance1 = stat1[k].errorEstimate();
Real expected = capletNpv[k];
if (std::fabs(calculated1 - expected) > tolerance1) {
BOOST_ERROR("Failed to reproduce expected caplet NPV"
<< "\n calculated: " << calculated1
<< "\n error int: " << tolerance1
<< "\n expected: " << expected);
}
Real calculated2 = stat2[k].mean();
Real tolerance2 = stat2[k].errorEstimate();
if (std::fabs(calculated2 - expected) > tolerance2) {
BOOST_ERROR("Failed to reproduce expected caplet NPV"
<< "\n calculated: " << calculated2
<< "\n error int: " << tolerance2
<< "\n expected: " << expected);
}
if (k != 0) {
Real calculated3 = stat3[k-1].mean();
Real tolerance3 = stat3[k-1].errorEstimate();
expected = ratchetNpv[k-1];
Real refError = 1e-5; // 1e-5. error bars of the reference values
if (std::fabs(calculated3 - expected) > tolerance3 + refError) {
BOOST_ERROR("Failed to reproduce expected caplet NPV"
<< "\n calculated: " << calculated3
<< "\n error int: " << tolerance3 + refError
<< "\n expected: " << expected);
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|