1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006, 2008, 2010, 2018, 2023 Klaus Spanderen
Copyright (C) 2024 Jacques du Toit
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*
QuantLib Benchmark Suite
Measures the performance of a preselected set of numerically intensive
test cases. This benchmarks supports multiprocessing, e.g.
Single process benchmark for testing:
./quantlib-benchmark --size=1 --nProc=1
Benchmark with 16 processes and the default size:
./quantlib-benchmark --nProc=16
Benchmark with one worker process per hardware thread and the default size:
./quantlib-benchmark
This benchmark is derived from quantlibtestsuite.cpp. Please see the
copyrights therein.
*/
#include <ql/types.hpp>
#include <ql/version.hpp>
#ifdef QL_ENABLE_PARALLEL_UNIT_TEST_RUNNER
#if BOOST_VERSION >= 108800
#include <boost/process/v1/system.hpp>
#include <boost/process/v1/args.hpp>
namespace bp = boost::process::v1;
#else
#include <boost/process.hpp>
namespace bp = boost::process;
#endif
#include <boost/interprocess/ipc/message_queue.hpp>
#endif
#define BOOST_TEST_NO_MAIN
#define BOOST_TEST_ALTERNATIVE_INIT_API
#include <boost/test/included/unit_test.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/test/unit_test_suite.hpp>
#include <boost/test/framework.hpp>
#include <iomanip>
#include <iostream>
#include <utility>
#include <vector>
#include <string>
#include <chrono>
#include <thread>
/* Use BOOST_MSVC instead of _MSC_VER since some other vendors (Metrowerks,
for example) also #define _MSC_VER
*/
#if !defined(BOOST_ALL_NO_LIB) && defined(BOOST_MSVC)
# include <ql/auto_link.hpp>
#endif
#include "utilities.hpp"
namespace {
/**
* A class representing an individual benchmark. Each benchmark is one of the QuantLib
* test-suite tests, run one or more times. Boost unit test framework causes a dilemma:
*
* * if we don't use boost::unit_test::framework::run to run the test, then all the
* correcness checks are disabled. We can't validate that the test passed.
* * if we do use boost::unit_test::framework::run, then we incur a very large overhead
* especially for short tests that are run many thousands of times.
*
* We deal with this by running each test exactly once using boost::unit_test::framework::run.
* Failures are marked using a boost::unit_test::test_observer and cause immediate tear down
* of the benchmark master process. All subsequent runs of the test are done through a hack.
* We copy the declarations of the BOOST_AUTO_TEST_CASE and friends macros in boost/test/unit_test_suite.hpp
* to declare the symbols that Boost creates. This allows us to call these symbols directly,
* by-passing the boost unit test framework completely.
*
* The overall benchmark is parallelised using Boost::IPC. QuantLib is not thread safe, so any
* kind of shared memory paralellism is ruled out. The benchmark creates a large (fixed) amount of
* work, distributes this between all the workers, and sees how quickly the workers can finish it all.
* The overall metric is #tasks/s that the system can process. The tasks are pre-set (these are the
* tests from the test-suite), and the --size argument to the benchmark controls how many times the
* entire set of tasks is executed. Once the machine is saturated with work the benchmark typically
* exhibits perfect weak scaling: doubling --size will double runtime and leave #tasks/s unchanged.
* The #tasks/s will typically increase as the machine is given more work to do.
*
* The pre-set benchmark sizes are chosen to saturate even very large machines.
*/
class Benchmark
{
public:
template<class CALLABLE>
Benchmark(
std::string name, // the test name, as known by boost::unit_test::test_unit
CALLABLE &&body, // the "body" of the test we want to run
double cost // how expensive (runtime) this test is relative to others
)
: name_(std::move(name)), cost_(cost), testBody_(std::forward<CALLABLE>(body)) {}
Benchmark(const Benchmark& copy) = default;
Benchmark(Benchmark&& move) = default;
Benchmark& operator=(const Benchmark &other) = default;
Benchmark& operator=(Benchmark &&other) = default;
~Benchmark() = default;
double getCost() const { return cost_; }
std::string getName() const { return name_; }
bool foundTestUnit() const { return test_ != nullptr; }
// Total runtime across multiple runs is manually accumulated into the class
double& getTotalRuntime() { return totalRuntime_; }
const double& getTotalRuntime() const { return totalRuntime_; }
void setTestUnit(const boost::unit_test::test_unit * unit) { test_ = unit; }
// Run the underlying QuantLib test exactly once using the Boost test framework
// This will check all results and will flag any errors that are found. It is much
// slower than running just the test body outside of the Boost framework
double runValidation() const
{
double time = -1.0;
try {
auto startTime = std::chrono::steady_clock::now();
boost::unit_test::framework::run(test_, false);
auto stopTime = std::chrono::steady_clock::now();
time = std::chrono::duration_cast<std::chrono::microseconds>(stopTime - startTime).count() * 1e-6;
}
catch(const std::exception &e) {
std::cerr << "error: caught exception in benchmark " << getName() << "\n"
<< "message: " << e.what() << "\n" << std::endl;
}
catch(...) {
std::cerr << "error: caught unknown exception in benchmark " << getName() << std::endl;
}
return time;
}
// Directly run the body of the underlying QuantLib test (multiple times) without using the Boost
// test framework. This eliminates all the boost overhead, but also disables all results checking.
double runBenchmark() const
{
double time = -1.0;
try {
auto startTime = std::chrono::steady_clock::now();
testBody_();
auto stopTime = std::chrono::steady_clock::now();
time = std::chrono::duration_cast<std::chrono::microseconds>(stopTime - startTime).count() * 1e-6;
}
catch(const std::exception &e) {
std::cerr << "Error: caught exception in benchmark " << getName() << "\n"
<< "Message: " << e.what() << "\n" << std::endl;
}
catch(...) {
std::cerr << "Error: caught unknown exception in benchmark " << getName() << std::endl;
}
return time;
}
private:
std::string name_;
const boost::unit_test::test_unit * test_ = nullptr;
double cost_;
double totalRuntime_ = 0;
std::function<void(void)> testBody_;
};
/**
* To determine programmatically whether a test has passed or not, Boost unit test framework requires
* us to register a test observer class. This only gives the pass/fail status for the most recently
* run test, not even the name of the test that was run. Hence we need some additional
* plumbing to ensure that intra-test failures are not overridden by intra-test passes
* (for a test that has multiple calls to BOOST_CHECK or BOOST_FAIL).
*/
struct BenchmarkResult : public boost::unit_test::test_observer
{
public:
BenchmarkResult() {
boost::unit_test::framework::register_observer(*this);
}
~BenchmarkResult() override {
boost::unit_test::framework::deregister_observer(*this);
}
BenchmarkResult(const BenchmarkResult&) = delete;
BenchmarkResult(BenchmarkResult&&) = delete;
BenchmarkResult& operator=(const BenchmarkResult &) = delete;
BenchmarkResult& operator=(BenchmarkResult &&) = delete;
void assertion_result( boost::unit_test::assertion_result ar ) override
{
passed_ = passed_ && (ar == boost::unit_test::AR_PASSED);
}
bool pass() const { return passed_; }
void reset() { passed_ = true; }
private:
bool passed_ = true;
};
/**
* This class takes a list of Benchmarks and attempts to find the corresponding
* test_units in the Boost test unit tree.
* */
class TestUnitFinder : public boost::unit_test::test_tree_visitor
{
private:
TestUnitFinder(std::vector<Benchmark> & bm) : bm_(bm) {}
// Utility method needed for initialising the Boost test framework
static bool init_unit_test_suite() { return true; }
public:
bool visit(const boost::unit_test::test_unit & tu) override
{
const std::string& thisTest = tu.full_name();
// Try find this in the bm array. We know every test name sill start with
// "QuantLibTests/" which contains 14 characters
for(auto &b : bm_ ) {
if( thisTest.find( b.getName(), 14) != std::string::npos ) {
// We have a match
b.setTestUnit( &tu );
}
}
// Continue visiting
return true;
}
// Find the corresponding Boost test_unit for each Benchmark
// If we can't find a test_unit, throw an exception
static void findAllTests(char** argv, std::vector<Benchmark> &bm)
{
boost::unit_test::framework::init(TestUnitFinder::init_unit_test_suite, 1, argv);
boost::unit_test_framework::framework::finalize_setup_phase();
TestUnitFinder tuf(bm);
boost::unit_test::traverse_test_tree(boost::unit_test_framework::framework::master_test_suite(), tuf, true);
// Now check that we've found all test units
for(const auto &b : bm) {
if( !b.foundTestUnit() ) {
std::string msg = "Unable to find the Boost test unit for Benchmark '";
msg += b.getName();
msg += "'";
throw std::runtime_error(msg);
}
}
}
private:
std::vector<Benchmark> & bm_;
};
// The container holding all the benchmarks we will run
std::vector<Benchmark> bm;
/**
* A clas to group and tidy up all the benchmark IO and boilerplate routines
*/
struct BenchmarkSupport
{
// Verbosity level and a logging macro to help debugging
static int verbose;
#define LOG_MESSAGE(...) if(BenchmarkSupport::verbose >= 3) { std::cout << __VA_ARGS__ << std::endl; }
// The set of pre-defined benchmark sizes that we support
static const std::vector< std::pair<std::string, unsigned int> > bmSizes;
// Turn a command line '--size=<value>' string into a benchmark size
static unsigned int parseBmSize(const std::string &size)
{
for(const auto & p : bmSizes) {
if(p.first == size)
return p.second;
}
// OK - it's not a preset size, let's see if it's parsable as an integer
try {
unsigned int sz = std::stoul(size);
return sz;
}
catch(const std::exception &e) {
// Unable to convert to integer. Abort
std::cerr << "Error: INVALID BENCHMARK RUN\n";
std::cerr << "Invalid custom benchmark size specified, unable to convert to an integer\n";
std::cerr << "Exception generated: " << e.what() << "\n";
exit(1);
}
}
// Turn a benchmark size into a string for printing
static std::string bmSizeAsString(unsigned int size)
{
for(const auto& p : bmSizes) {
if(p.second == size)
return p.first;
}
// Not a preset size
return "Custom (" + std::to_string(size) + ")";
}
static void printGreeting(const std::string &size, unsigned nProc)
{
std::cout << std::endl;
std::cout << std::string(84,'-') << "\n";
std::cout << "Benchmark Suite QuantLib " QL_VERSION << "\n";
std::cout << "\n";
std::cout << "Benchmark size='" << size << "' on " << nProc << " processes\n";
std::cout << std::string(84,'-') << "\n";
std::cout << std::endl;
}
// If a test fails, notify the user and terminate the benchmark
static void terminateBenchmark()
{
std::cerr << "\033[0m\nError: INVALID BENCHMARK RUN.\n"
<< "One or more tests failed, please see the log for details" << std::endl ;
// Tear down the master process, which kills all child threads/processes
exit(1);
}
static void printResults(
unsigned nSize, // the size of the benchmark
double masterLifetime, // lifetime of the master process
std::vector<double> workerLifetimes // lifetimes of all the worker processes
)
{
std::cout << "\033[0m\n";
std::cout << "Benchmark Size = " << BenchmarkSupport::bmSizeAsString(nSize) << std::endl;
std::cout << "Number of processes = " << workerLifetimes.size() << std::endl;
std::cout << "System Throughput = " << (double(nSize) * bm.size() ) / masterLifetime << " tasks/s" << std::endl;
std::cout << "Benchmark Runtime = " << masterLifetime<< "s" << std::endl;
if(verbose >=1 )
{
const size_t nProc = workerLifetimes.size();
std::cout << "Num. Worker Processes = " << nProc << std::endl;
// Work out tail effect. We define "tail effect" as the ratio of the average (geomean)
// tail lifetime, to the lifetime of the master process. The cutoff for defining
// the "tail" is arbitrary. A ratio of 1 means no tail effect (tail lifetime is same
// as lifetime of master process), a ratio near 0 means tail finished significantly
// before master process
std::sort(workerLifetimes.begin(), workerLifetimes.end());
const double thresh = 0.1;
int tail = (int)std::ceil(thresh * nProc);
double tailGeomean = 1.0;
for(int i=0; i<tail; i++) {
tailGeomean *= workerLifetimes[i];
}
tailGeomean = std::pow(tailGeomean, 1.0/tail);
const double tailEffect = tailGeomean / masterLifetime;
std::cout << "Tail Effect Ratio = " << tailEffect << std::endl;
std::cout << " = Geomean( Shortest " << tail << " worker lifetimes )" << std::endl;
std::cout << " --------------------------------------------------------" << std::endl;
std::cout << " Lifetime( Master process )" << std::endl;
std::cout << std::endl;
}
std::cout << std::string(84,'-') << std::endl;
if(verbose >= 2) {
std::cout << " Total Runtime spent in each test " << std::endl;
std::cout << std::string(84,'-') << std::endl;
// Compute max test name length
size_t len = 0;
for (const auto & b : bm) { len = std::max(len, b.getName().length() ); }
for (const auto& b: bm) {
std::cout << b.getName()
<< std::string(len+2 - b.getName().length(),' ')
<< ": " << b.getTotalRuntime() << "s" << std::endl;
}
std::cout << std::string(84,'-') << std::endl;
}
std::cout << std::endl;
}
#ifdef QL_ENABLE_PARALLEL_UNIT_TEST_RUNNER
// The entry point for the std::thread's that will be the workers
static int worker(const char * exe, const std::vector<std::string>& args) {
return bp::system(exe, bp::args=args);
}
#endif
// A helper class to push benchmark objects into the benchmark container
// before main() starts. Every time the constructor is called, a test is added.
struct AddBenchmark {
template<class CALLABLE>
AddBenchmark(std::vector<Benchmark> &bm, CALLABLE && test_body, const char* name, double cost) {
bm.push_back( Benchmark(name, std::forward<CALLABLE>(test_body), cost) );
}
};
};
int BenchmarkSupport::verbose = 0;
const std::vector< std::pair<std::string, unsigned int> > BenchmarkSupport::bmSizes = {
{"XXS", 60},
{"XS", 120},
{"S", 240},
{"M", 480},
{"L", 960}
};
// The messages sent from workers to master across boost IPC queues
struct IPCResultMsg
{
unsigned bmId; // the benchcmark that was run
unsigned threadId; // the ID of the worker who ran it
double time; // the runtime
};
// The messages sent from master to workers across boost IPC queues
struct IPCInstructionMsg
{
unsigned j = 0; // the benchmark to run
bool validate = false; // whether to run in validation mode or not
};
} // END anonymous namespace
// These are pulled from boost/unit_test/unit_test_suite.hpp. We declare the
// bodies of the tests so that we can run them more efficiently.
#define QL_BENCHMARK_DECLARE(test_fixture, test_name, num_iters, cost) \
namespace QuantLibTests { \
namespace test_fixture { \
struct test_name : public BOOST_AUTO_TEST_CASE_FIXTURE { \
void test_method(); \
}; \
}} \
\
namespace { \
/* Declare unique global variable and push benchmark into bm */ \
BenchmarkSupport::AddBenchmark test_fixture##_##test_name( \
bm, \
[] { QuantLibTests::test_fixture::test_name thetest; for(int i=0; i<num_iters; i++) thetest.test_method(); }, \
#test_fixture "/" #test_name, cost); \
}
// Set of all tests we will run. The integer is the number of times the test is run, and
// the value at the end is a relative runtime cost of each benchmark compared with the others.
// Exact values are not needed, we just need to know what is "expensive" and what is "cheap"
// in terms of runtime.
// Equity & FX
QL_BENCHMARK_DECLARE(AmericanOptionTests, testFdAmericanGreeks, 1, 0.5);
QL_BENCHMARK_DECLARE(AmericanOptionTests, testFdValues, 20, 3.0);
QL_BENCHMARK_DECLARE(AmericanOptionTests, testCallPutParity, 100, 1.0);
QL_BENCHMARK_DECLARE(AmericanOptionTests, testQdEngineStandardExample, 400, 0.5);
QL_BENCHMARK_DECLARE(EuropeanOptionTests, testImpliedVol, 1, 0.5);
QL_BENCHMARK_DECLARE(EuropeanOptionTests, testMcEngines, 1, 1.0);
QL_BENCHMARK_DECLARE(EuropeanOptionTests, testLocalVolatility, 3, 2.0);
QL_BENCHMARK_DECLARE(BatesModelTests, testDAXCalibration, 1, 0.5);
QL_BENCHMARK_DECLARE(BatesModelTests, testAnalyticVsMCPricing, 1, 1.0);
QL_BENCHMARK_DECLARE(BatesModelTests, testAnalyticAndMcVsJumpDiffusion, 5, 1.0);
QL_BENCHMARK_DECLARE(HestonModelTests, testDAXCalibration, 1, 0.5);
QL_BENCHMARK_DECLARE(HestonModelTests, testFdBarrierVsCached, 1, 3.0);
QL_BENCHMARK_DECLARE(HestonModelTests, testFdAmerican, 1, 1.0);
QL_BENCHMARK_DECLARE(HestonModelTests, testLocalVolFromHestonModel, 10, 1.0);
QL_BENCHMARK_DECLARE(FdHestonTests, testFdmHestonAmerican, 10, 1.0);
QL_BENCHMARK_DECLARE(FdHestonTests, testAmericanCallPutParity, 15, 1.5);
QL_BENCHMARK_DECLARE(FdHestonTests, testFdmHestonBarrierVsBlackScholes, 1, 2.0);
QL_BENCHMARK_DECLARE(HestonSLVModelTests, testMonteCarloCalibration, 1, 3.0);
QL_BENCHMARK_DECLARE(HestonSLVModelTests, testHestonFokkerPlanckFwdEquation, 1, 5.0);
QL_BENCHMARK_DECLARE(HestonSLVModelTests, testBarrierPricingViaHestonLocalVol, 1, 1.0);
QL_BENCHMARK_DECLARE(MCLongstaffSchwartzEngineTests, testAmericanOption, 1, 2.0);
QL_BENCHMARK_DECLARE(VarianceGammaTests, testVarianceGamma, 1, 0.1);
QL_BENCHMARK_DECLARE(ConvertibleBondTests, testBond, 100, 2.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testArbitrageFree, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testAndreasenHugeCallPut, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testAndreasenHugeCall, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testAndreasenHugePut, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testFlatVolCalibration, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testTimeDependentInterestRates, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testPiecewiseConstantInterpolation, 1, 1.0);
QL_BENCHMARK_DECLARE(AndreasenHugeVolatilityInterplTests, testLinearInterpolation, 1, 1.0);
// Interest Rates
QL_BENCHMARK_DECLARE(ShortRateModelTests, testSwaps, 30, 3.0);
QL_BENCHMARK_DECLARE(ShortRateModelTests, testCachedHullWhite2, 500, 1.0);
QL_BENCHMARK_DECLARE(ShortRateModelTests, testCachedHullWhiteFixedReversion, 1000, 1.0);
QL_BENCHMARK_DECLARE(MarketModelCmsTests, testMultiStepCmSwapsAndSwaptions, 1, 11.0);
QL_BENCHMARK_DECLARE(MarketModelSmmTests, testMultiStepCoterminalSwapsAndSwaptions, 1, 9.0);
QL_BENCHMARK_DECLARE(BermudanSwaptionTests, testCachedG2Values, 1, 2.0);
QL_BENCHMARK_DECLARE(BermudanSwaptionTests, testCachedValues, 100, 3.0);
QL_BENCHMARK_DECLARE(LiborMarketModelTests, testSwaptionPricing, 1, 1.0);
QL_BENCHMARK_DECLARE(LiborMarketModelTests, testCalibration, 1, 5.0);
QL_BENCHMARK_DECLARE(PiecewiseYieldCurveTests, testConvexMonotoneForwardConsistency, 10, 2.0);
QL_BENCHMARK_DECLARE(PiecewiseYieldCurveTests, testFlatForwardConsistency, 50, 3.0);
QL_BENCHMARK_DECLARE(PiecewiseYieldCurveTests, testGlobalBootstrap, 20, 2.0);
QL_BENCHMARK_DECLARE(OvernightIndexedSwapTests, testBootstrapWithArithmeticAverage, 10, 5.0);
QL_BENCHMARK_DECLARE(OvernightIndexedSwapTests, testBaseBootstrap, 10, 3.0);
QL_BENCHMARK_DECLARE(OvernightIndexedSwapTests, testBootstrapRegression, 10, 1.0);
QL_BENCHMARK_DECLARE(MarkovFunctionalTests, testCalibrationTwoInstrumentSets, 1, 3.0);
QL_BENCHMARK_DECLARE(MarkovFunctionalTests, testCalibrationOneInstrumentSet, 1, 4.0);
QL_BENCHMARK_DECLARE(MarkovFunctionalTests, testVanillaEngines, 1, 7.0);
QL_BENCHMARK_DECLARE(MarkovFunctionalTests, testBermudanSwaption, 3, 1.0);
QL_BENCHMARK_DECLARE(SwaptionVolatilityCubeTests, testSpreadedCube, 20, 1.0);
QL_BENCHMARK_DECLARE(SwaptionVolatilityCubeTests, testSabrNormalVolatility, 1, 1.0);
QL_BENCHMARK_DECLARE(SwaptionVolatilityCubeTests, testSabrVols, 30, 1.0);
QL_BENCHMARK_DECLARE(ZabrTests, testConsistency, 1, 10.0);
QL_BENCHMARK_DECLARE(CmsSpreadTests, testCouponPricing, 1, 1.0);
QL_BENCHMARK_DECLARE(CmsTests, testCmsSwap, 20, 2.0);
QL_BENCHMARK_DECLARE(CmsTests, testParity, 30, 2.0);
QL_BENCHMARK_DECLARE(InterestRateTests, testConversions, 10000, 0.1);
// Credit Derivatives
QL_BENCHMARK_DECLARE(NthToDefaultTests, testGauss, 2, 14.0);
QL_BENCHMARK_DECLARE(CreditDefaultSwapTests, testImpliedHazardRate, 1000, 1.0);
QL_BENCHMARK_DECLARE(CreditDefaultSwapTests, testCachedMarketValue, 1000, 0.1);
QL_BENCHMARK_DECLARE(CreditDefaultSwapTests, testIsdaEngine, 200, 2.0);
QL_BENCHMARK_DECLARE(SquareRootCLVModelTests, testSquareRootCLVMappingFunction, 20, 0.5);
QL_BENCHMARK_DECLARE(SquareRootCLVModelTests, testSquareRootCLVVanillaPricing, 200, 0.5);
// Energy
QL_BENCHMARK_DECLARE(SwingOptionTests, testExtOUJumpSwingOption, 1, 3.0);
QL_BENCHMARK_DECLARE(SwingOptionTests, testExtOUJumpVanillaEngine, 1, 3.0);
QL_BENCHMARK_DECLARE(SwingOptionTests, testFdBSSwingOption, 20, 1.0);
QL_BENCHMARK_DECLARE(VppTests, testVPPPricing, 1, 5.0);
QL_BENCHMARK_DECLARE(VppTests, testKlugeExtOUSpreadOption, 1, 1.0);
// Math
QL_BENCHMARK_DECLARE(RiskStatisticsTests, testResults, 4, 0.5);
QL_BENCHMARK_DECLARE(LowDiscrepancyTests, testMersenneTwisterDiscrepancy, 2, 0.5);
QL_BENCHMARK_DECLARE(LinearLeastSquaresRegressionTests, testMultiDimRegression, 20, 2.0);
QL_BENCHMARK_DECLARE(StatisticsTests, testIncrementalStatistics, 20, 0.5);
QL_BENCHMARK_DECLARE(FunctionsTests, testFactorial, 1000, 0.1);
QL_BENCHMARK_DECLARE(FunctionsTests, testGammaFunction, 1000, 0.5);
QL_BENCHMARK_DECLARE(FunctionsTests, testGammaValues, 100000, 0.5);
QL_BENCHMARK_DECLARE(FunctionsTests, testModifiedBesselFunctions, 10000, 0.5);
QL_BENCHMARK_DECLARE(FunctionsTests, testWeightedModifiedBesselFunctions, 20, 0.5);
QL_BENCHMARK_DECLARE(LowDiscrepancyTests, testHalton, 80, 1.0);
QL_BENCHMARK_DECLARE(GaussianQuadraturesTests, testNonCentralChiSquared, 4000, 0.5);
QL_BENCHMARK_DECLARE(GaussianQuadraturesTests, testNonCentralChiSquaredSumOfNodes, 8000, 0.5);
QL_BENCHMARK_DECLARE(GaussianQuadraturesTests, testMomentBasedGaussianPolynomial, 100000, 0.5);
QL_BENCHMARK_DECLARE(RoundingTests, testCeiling, 100000, 0.1);
QL_BENCHMARK_DECLARE(RoundingTests, testUp, 100000, 0.1);
QL_BENCHMARK_DECLARE(RoundingTests, testFloor, 100000, 0.1);
QL_BENCHMARK_DECLARE(RoundingTests, testDown, 100000, 0.1);
QL_BENCHMARK_DECLARE(RoundingTests, testClosest, 100000, 0.1);
int main(int argc, char* argv[] ) // NOLINT(bugprone-exception-escape)
{
const std::string clientModeStr = "--client_mode=true";
bool clientMode = false;
// Default number of worker processes to use
#if defined(QL_ENABLE_PARALLEL_UNIT_TEST_RUNNER)
unsigned nProc = std::thread::hardware_concurrency();
#else
unsigned nProc = 1;
#endif
// By default, run the smallest size we have.
std::string defaultSize = "3";
std::string size = defaultSize;
// A threadId is useful for debugging, but has no other purpose
unsigned threadId = 0;
//// Argument handling //////////////////////////
for (int i=1; i<argc; ++i) {
std::string arg = argv[i];
std::vector<std::string> tok;
boost::split(tok, arg, boost::is_any_of("="));
if (tok[0] == "--nProc") {
QL_REQUIRE(tok.size() == 2, "Must provide a number of worker processes");
try {
nProc = boost::numeric_cast<unsigned>(std::stoul(tok[1]));
} catch(const std::exception &e) {
std::cerr << "Invalid argument to 'nProc', not a positive integer" << std::endl;
std::cerr << "Exception generated: " << e.what() << "\n";
exit(1);
}
}
else if (tok[0] == "--threadId") {
QL_REQUIRE(tok.size() == 2, "Must provide a threadId");
try {
threadId = boost::numeric_cast<unsigned>(std::stoul(tok[1]));
} catch(const std::exception &e) {
std::cerr << "Invalid argument to 'threadId', not a positive integer. This is an internal error, please contact the developers" << std::endl;
std::cerr << "Exception generated: " << e.what() << "\n";
exit(1);
}
}
else if (tok[0] == "--verbose") {
QL_REQUIRE(tok.size() == 2, "Must provide a value for verbose");
try {
BenchmarkSupport::verbose = boost::numeric_cast<unsigned>(std::stoul(tok[1]));
} catch(const std::exception &e) {
std::cerr << "Invalid argument to 'verbose', not a positive integer" << std::endl;
std::cerr << "Exception generated: " << e.what() << "\n";
exit(1);
}
QL_REQUIRE(BenchmarkSupport::verbose>=0 && BenchmarkSupport::verbose <= 3, "Value for verbose must be 0, 1, 2 or 3");
}
else if (tok[0] == "--size") {
QL_REQUIRE(tok.size() == 2,
"benchmark size is not given");
size = tok[1];
}
else if (arg == "-h" || arg == "--help" || arg == "-?") {
std::cout
<< "\n'quantlib-benchmark' is QuantLib " QL_VERSION " CPU performance benchmark\n"
<< "\n"
<< "You are strongly encouraged to run 'ulimit -n unlimited' before running this benchmark\n"
<< "on Linux systems. It uses Boost::IPC for parallelism, and a large number of file descriptors\n"
<< "are needed to run this benchmark with a large number of worker processes.\n"
<< "\n"
<< "By default the benchmark uses a tiny size as a quick check that\n"
<< "everything works. To benchmark large systems a size of 'S' or larger\n"
<< "should be used.\n"
<< "\n"
<< "Usage: ./quantlib-benchmark [OPTION] ...\n"
<< "\n"
<< "with the following options:"
<< "\n"
#ifdef QL_ENABLE_PARALLEL_UNIT_TEST_RUNNER
<< "--nProc[=NN] \t parallel execution with NN worker processes.\n"
<< " \t Default value is nProc=" << nProc << "\n"
<< "\n"
#endif
<< "--size=<";
for(const auto &p : BenchmarkSupport::bmSizes) {
std::cout << p.first << "|";
}
std::cout << "NN> \n"
<< " \t the size of the benchmark (how many times each \n"
<< " \t task is run), where 'NN' can be any positive integer.\n"
<< " \t Default vaue is size=" << defaultSize << "\n"
<< "\n"
<< "--verbose=<0|1|2|3>\t controls verbosity of output, default value is verbose=" << BenchmarkSupport::verbose << "\n"
<< "\n"
<< "-?, --help \t display this help and exit"
<< std::endl;
return 0;
}
else if (arg == clientModeStr) {
clientMode = true;
}
else {
std::cout << "quantlib-benchmark: unrecognized option '" << arg << "'."
<< std::endl
<< "Try 'quantlib-benchmark --help' for more information."
<< std::endl;
return 0;
}
}
const unsigned int nSize = BenchmarkSupport::parseBmSize(size);
std::vector<double> workerLifetimes;
//////// Finished argument processing, start benchmark code //////////////////////////////////////////////
try {
// Ensure we find the Boost test_unit for each benchmark
TestUnitFinder::findAllTests(argv, bm);
// To alleviate tail effects, we sort the bechmarks so that the most expensive ones are first.
// These will be the first to be dispatched to the OS scheduler
std::sort(bm.begin(), bm.end(),
[](const auto& a, const auto& b) { return a.getCost() > b.getCost(); });
BenchmarkResult bmResult;
if( !clientMode)
BenchmarkSupport::printGreeting(size, nProc);
// Sequential benchmark, useful for debugging
if (nProc == 1 && !clientMode) {
// First we run the validation to ensure that the
// benchmark binary is computing the correct results
for(auto & j : bm) {
bmResult.reset();
j.runValidation();
if( !bmResult.pass() ) {
BenchmarkSupport::terminateBenchmark();
}
}
// Now run the benchmark proper
auto startTime = std::chrono::steady_clock::now();
for (unsigned i=0; i < nSize; ++i) {
for(unsigned int j=0; j<bm.size(); j++) {
double time = bm[j].runBenchmark();
bm[j].getTotalRuntime() += time;
LOG_MESSAGE("MASTER : completed benchmarkId=" << j << ", time=" << time);
}
}
auto stopTime = std::chrono::steady_clock::now();
double masterLifetime = std::chrono::duration_cast<std::chrono::microseconds>(stopTime - startTime).count() * 1e-6;
workerLifetimes.push_back(masterLifetime);
BenchmarkSupport::printResults(nSize, masterLifetime, workerLifetimes);
}
else {
#if defined(QL_ENABLE_PARALLEL_UNIT_TEST_RUNNER)
using namespace boost::interprocess;
message_queue::size_type recvd_size;
unsigned int priority=0;
const unsigned int terminateId=-1;
const unsigned int startTimerId = terminateId - 1;
const char* const testUnitIdQueueName = "test_unit_queue";
const char* const testResultQueueName = "test_result_queue";
if (!clientMode) {
// Boost IPC message queue setup
message_queue::remove(testUnitIdQueueName);
message_queue::remove(testResultQueueName);
struct queue_remove {
explicit queue_remove(const char* name) : name_(name) { }
~queue_remove() { message_queue::remove(name_); }
private:
const char* const name_;
} remover1(testUnitIdQueueName),remover2(testResultQueueName);
message_queue mq(
open_or_create, testUnitIdQueueName,
nSize*bm.size()+nProc, sizeof(IPCInstructionMsg)
);
message_queue rq(
open_or_create, testResultQueueName,
std::max(16u, nProc),
sizeof(IPCResultMsg)
);
// Create the thread group and start each worker process, giving it a unique threadId (useful for debugging)
std::vector<std::thread> threadGroup;
{
std::string thread("--threadId="), verb("--verbose=");
verb += std::to_string(BenchmarkSupport::verbose);
std::vector<std::string> workerArgs = {clientModeStr, thread, verb};
for (unsigned i = 0; i < nProc; ++i) {
LOG_MESSAGE("MASTER : creating worker threadId=" << i+1);
workerArgs[1] = thread + std::to_string(i+1);
threadGroup.emplace_back([&,workerArgs]() { BenchmarkSupport::worker(argv[0], workerArgs); });
}
}
IPCInstructionMsg msg;
IPCResultMsg r;
// Do a full validation run first to ensure the benchmark binary is computing
// the correct values
for (unsigned j=0; j < bm.size(); ++j) {
msg = {j, true};
// Will be non-blocking send since send buffer is big enough
LOG_MESSAGE("MASTER : sending benchmarkId=" << msg.j << " with validation=" << msg.validate);
mq.send(&msg, sizeof(IPCInstructionMsg), 0);
}
// Receive all results from workers
for (unsigned i=0; i < bm.size(); ++i) {
rq.receive(&r, sizeof(IPCResultMsg), recvd_size, priority);
LOG_MESSAGE("MASTER : received result : threadId=" << r.threadId << ", benchmarkId=" << r.bmId
<< ", time=" << r.time << " : " << bm.size()-1-i << " results pending");
if(r.time < 0) {
// A benchmark test has failed
BenchmarkSupport::terminateBenchmark();
}
}
// Start timer for the benchmark
auto startTime = std::chrono::steady_clock::now();
// Tell all workers to start their timers
for(unsigned j=0; j<nProc; j++) {
msg = {startTimerId, false};
LOG_MESSAGE("MASTER : sending worker=" << j << " command to restart timer");
mq.send(&msg, sizeof(IPCInstructionMsg), 0);
}
// Now do the benchmark run proper
for (unsigned j=0; j < bm.size(); ++j) {
// Enqueue nSize copies of each task to even out load balance
for (unsigned i=0; i < nSize; ++i) {
msg = {j, false};
// Will be non-blocking send since send buffer is big enough
LOG_MESSAGE("MASTER : sending benchmarkId=" << msg.j << " with validation=" << msg.validate);
mq.send(&msg, sizeof(IPCInstructionMsg), 0);
}
}
// Receive all results from workers
for (unsigned i=0; i < nSize*bm.size(); ++i) {
rq.receive(&r, sizeof(IPCResultMsg), recvd_size, priority);
LOG_MESSAGE("MASTER : received result : threadId=" << r.threadId << ", benchmarkId=" << r.bmId
<< ", time=" << r.time << " : " << nSize*bm.size()-1-i << " results pending");
if(r.time < 0) {
// A benchmark test has failed - should be impossible here
BenchmarkSupport::terminateBenchmark();
}
bm[r.bmId].getTotalRuntime() += r.time;
}
// Send terminate signal to all workers
for (unsigned i=0; i < nProc; ++i) {
LOG_MESSAGE("MASTER : sending TERMINATE signal");
msg = {terminateId, false};
mq.send(&msg, sizeof(IPCInstructionMsg), 0);
}
// Receive worker lifetimes
for (unsigned i=0; i < nProc; ++i) {
rq.receive(&r, sizeof(IPCResultMsg), recvd_size, priority);
LOG_MESSAGE("MASTER : received worker lifetime : threadId=" << r.threadId << ", time=" << r.time << " : " << nProc-1-i << " lifetimes pending");
workerLifetimes.push_back(r.time);
}
// Synchronize with and exit all threads
for (auto& thread: threadGroup) {
thread.join();
}
auto stopTime = std::chrono::steady_clock::now();
double masterLifetime = std::chrono::duration_cast<std::chrono::microseconds>(stopTime - startTime).count() * 1e-6;
BenchmarkSupport::printResults(nSize, masterLifetime, workerLifetimes);
}
else {
// We are a worker process - open Boost IPC queues
message_queue mq(open_only, testUnitIdQueueName);
message_queue rq(open_only, testResultQueueName);
// Record start of this process's lifetime. We keep tack of lifetimes
// in order to monitor tail effects
std::chrono::time_point<std::chrono::steady_clock> startTime, stopTime;
for(;;) {
IPCInstructionMsg id;
mq.receive(&id, sizeof(IPCInstructionMsg), recvd_size, priority);
if(id.j == startTimerId) {
// The benchmark run proper is starting - start the timer for this worker.
// If this worker has nothing to do, we still want a non-zero lifetime
startTime = std::chrono::steady_clock::now();
stopTime = std::chrono::steady_clock::now();
}
else if(id.j == terminateId) {
// Worker process being told to terminate. Report our lifetime.
// Lifetime is how long it took until we completed our final task
double workerLifetime = std::chrono::duration_cast<std::chrono::microseconds>(stopTime - startTime).count() * 1e-6;
IPCResultMsg r {terminateId, threadId, workerLifetime};
LOG_MESSAGE("WORKER-" << std::setw(3) << threadId << ": received TERMINATE signal, sending lifetime=" << r.time);
rq.send(&r, sizeof(IPCResultMsg), 0);
break;
}
else {
LOG_MESSAGE("WORKER-" << std::setw(3) << threadId << ": received benchmarkId=" << id.j << ", validation=" << id.validate << ". Starting execution ...");
double time;
if( id.validate ) {
bmResult.reset();
time = bm[id.j].runValidation();
time = (bmResult.pass() ? time : -1.0);
}
else {
time = bm[id.j].runBenchmark();
}
IPCResultMsg r {id.j, threadId, time};
// We record the timestamp after each task is complete
// We use this to define worker lifetime
stopTime = std::chrono::steady_clock::now();
LOG_MESSAGE("WORKER-" << std::setw(3) << threadId << ": sending result benchmarkId=" << id.j << ", time=" << r.time);
rq.send(&r, sizeof(IPCResultMsg), 0);
}
}
LOG_MESSAGE("WORKER-" << std::setw(3) << threadId << ": exiting");
}
#else
std::cout << "Please compile QuantLib with option 'QL_ENABLE_PARALLEL_UNIT_TEST_RUNNER'"
" to run the benchmarks in parallel" << std::endl;
#endif
}
} catch(const std::exception &e) {
if( !clientMode )
std::cerr << "MASTER process caught an exception:\n" << e.what() << std::endl;
else
std::cerr << "WORKER-" << std::setw(3) << threadId << " caught an exception:\n" << e.what() << std::endl;
}
return 0;
}
|