1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Johannes Göttker-Schnetmann
Copyright (C) 2015, 2016 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/instruments/vanillaoption.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/methods/finitedifferences/utilities/bsmrndcalculator.hpp>
#include <ql/methods/finitedifferences/utilities/cevrndcalculator.hpp>
#include <ql/methods/finitedifferences/utilities/gbsmrndcalculator.hpp>
#include <ql/methods/finitedifferences/utilities/hestonrndcalculator.hpp>
#include <ql/methods/finitedifferences/utilities/localvolrndcalculator.hpp>
#include <ql/methods/finitedifferences/utilities/squarerootprocessrndcalculator.hpp>
#include <ql/models/equity/hestonmodel.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/vanilla/fdblackscholesvanillaengine.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/hestonprocess.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/volatility/equityfx/hestonblackvolsurface.hpp>
#include <ql/termstructures/volatility/equityfx/localconstantvol.hpp>
#include <ql/termstructures/volatility/equityfx/noexceptlocalvolsurface.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <ql/timegrid.hpp>
#include <ql/types.hpp>
#include <utility>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(RiskNeutralDensityCalculatorTests)
BOOST_AUTO_TEST_CASE(testDensityAgainstOptionPrices) {
BOOST_TEST_MESSAGE("Testing density against option prices...");
const DayCounter dayCounter = Actual365Fixed();
const Date todaysDate = Settings::instance().evaluationDate();
const Real s0 = 100;
const Handle<Quote> spot(
ext::make_shared<SimpleQuote>(s0));
const Rate r = 0.075;
const Rate q = 0.04;
const Volatility v = 0.27;
const Handle<YieldTermStructure> rTS(flatRate(todaysDate, r, dayCounter));
const Handle<YieldTermStructure> qTS(flatRate(todaysDate, q, dayCounter));
const ext::shared_ptr<BlackScholesMertonProcess> bsmProcess(
new BlackScholesMertonProcess(
spot, qTS, rTS,
Handle<BlackVolTermStructure>(flatVol(v, dayCounter))));
const BSMRNDCalculator bsm(bsmProcess);
const Time times[] = { 0.5, 1.0, 2.0 };
const Real strikes[] = { 75.0, 100.0, 150.0 };
for (Real t : times) {
const Volatility stdDev = v * std::sqrt(t);
const DiscountFactor df = rTS->discount(t);
const Real fwd = s0*qTS->discount(t)/df;
for (Real strike : strikes) {
const Real xs = std::log(strike);
const BlackCalculator blackCalc(
Option::Put, strike, fwd, stdDev, df);
const Real tol = 10*std::sqrt(QL_EPSILON);
const Real calculatedCDF = bsm.cdf(xs, t);
const Real expectedCDF
= blackCalc.strikeSensitivity()/df;
if (std::fabs(calculatedCDF - expectedCDF) > tol) {
BOOST_FAIL("failed to reproduce Black-Scholes-Merton cdf"
<< "\n calculated: " << calculatedCDF
<< "\n expected: " << expectedCDF
<< "\n diff: " << calculatedCDF - expectedCDF
<< "\n tol: " << tol);
}
const Real deltaStrike = strike*std::sqrt(QL_EPSILON);
const Real calculatedPDF = bsm.pdf(xs, t);
const Real expectedPDF = strike/df*
( BlackCalculator(Option::Put, strike+deltaStrike,
fwd, stdDev, df).strikeSensitivity()
- BlackCalculator(Option::Put, strike - deltaStrike,
fwd, stdDev, df).strikeSensitivity())/(2*deltaStrike);
if (std::fabs(calculatedPDF - expectedPDF) > tol) {
BOOST_FAIL("failed to reproduce Black-Scholes-Merton pdf"
<< "\n calculated: " << calculatedPDF
<< "\n expected: " << expectedPDF
<< "\n diff: " << calculatedPDF - expectedPDF
<< "\n tol: " << tol);
}
}
}
}
BOOST_AUTO_TEST_CASE(testBSMagainstHestonRND) {
BOOST_TEST_MESSAGE("Testing Black-Scholes-Merton and Heston densities...");
const DayCounter dayCounter = Actual365Fixed();
const Date todaysDate = Settings::instance().evaluationDate();
const Real s0 = 10;
const Handle<Quote> spot(
ext::make_shared<SimpleQuote>(s0));
const Rate r = 0.155;
const Rate q = 0.0721;
const Volatility v = 0.27;
const Real kappa = 1.0;
const Real theta = v*v;
const Real rho = -0.75;
const Real v0 = v*v;
const Real sigma = 0.0001;
const Handle<YieldTermStructure> rTS(flatRate(todaysDate, r, dayCounter));
const Handle<YieldTermStructure> qTS(flatRate(todaysDate, q, dayCounter));
const ext::shared_ptr<BlackScholesMertonProcess> bsmProcess(
new BlackScholesMertonProcess(
spot, qTS, rTS,
Handle<BlackVolTermStructure>(flatVol(v, dayCounter))));
const BSMRNDCalculator bsm(bsmProcess);
const HestonRNDCalculator heston(
ext::make_shared<HestonProcess>(
rTS, qTS, spot,
v0, kappa, theta, sigma, rho), 1e-8);
const Time times[] = { 0.5, 1.0, 2.0 };
const Real strikes[] = { 7.5, 10, 15 };
const Real probs[] = { 1e-6, 0.01, 0.5, 0.99, 1.0-1e-6 };
for (Real t : times) {
for (Real strike : strikes) {
const Real xs = std::log(strike);
const Real expectedPDF = bsm.pdf(xs, t);
const Real calculatedPDF = heston.pdf(xs, t);
const Real tol = 1e-4;
if (std::fabs(expectedPDF - calculatedPDF) > tol) {
BOOST_FAIL("failed to reproduce Black-Scholes-Merton pdf "
"with the Heston model"
<< "\n calculated: " << calculatedPDF
<< "\n expected: " << expectedPDF
<< "\n diff: " << calculatedPDF - expectedPDF
<< "\n tol: " << tol);
}
const Real expectedCDF = bsm.cdf(xs, t);
const Real calculatedCDF = heston.cdf(xs, t);
if (std::fabs(expectedCDF - calculatedCDF) > tol) {
BOOST_FAIL("failed to reproduce Black-Scholes-Merton cdf "
"with the Heston model"
<< "\n calculated: " << calculatedCDF
<< "\n expected: " << expectedCDF
<< "\n diff: " << calculatedCDF - expectedCDF
<< "\n tol: " << tol);
}
}
for (Real prob : probs) {
const Real expectedInvCDF = bsm.invcdf(prob, t);
const Real calculatedInvCDF = heston.invcdf(prob, t);
const Real tol = 1e-3;
if (std::fabs(expectedInvCDF - calculatedInvCDF) > tol) {
BOOST_FAIL("failed to reproduce Black-Scholes-Merton "
"inverse cdf with the Heston model"
<< "\n calculated: " << calculatedInvCDF
<< "\n expected: " << expectedInvCDF
<< "\n diff: " << calculatedInvCDF - expectedInvCDF
<< "\n tol: " << tol);
}
}
}
}
// see Svetlana Borovkova, Ferry J. Permana
// Implied volatility in oil markets
// http://www.researchgate.net/publication/46493859_Implied_volatility_in_oil_markets
class DumasParametricVolSurface : public BlackVolatilityTermStructure {
public:
DumasParametricVolSurface(Real b1,
Real b2,
Real b3,
Real b4,
Real b5,
ext::shared_ptr<Quote> spot,
const ext::shared_ptr<YieldTermStructure>& rTS,
ext::shared_ptr<YieldTermStructure> qTS)
: BlackVolatilityTermStructure(0, NullCalendar(), Following, rTS->dayCounter()), b1_(b1),
b2_(b2), b3_(b3), b4_(b4), b5_(b5), spot_(std::move(spot)), rTS_(rTS),
qTS_(std::move(qTS)) {}
Date maxDate() const override { return Date::maxDate(); }
Rate minStrike() const override { return 0.0; }
Rate maxStrike() const override { return QL_MAX_REAL; }
protected:
Volatility blackVolImpl(Time t, Real strike) const override {
QL_REQUIRE(t >= 0.0, "t must be >= 0");
if (t < QL_EPSILON)
return b1_;
const Real fwd = spot_->value()*qTS_->discount(t)/rTS_->discount(t);
const Real mn = std::log(fwd/strike)/std::sqrt(t);
return b1_ + b2_*mn + b3_*mn*mn + b4_*t + b5_*mn*t;
}
private:
const Real b1_, b2_, b3_, b4_, b5_;
const ext::shared_ptr<Quote> spot_;
const ext::shared_ptr<YieldTermStructure> rTS_;
const ext::shared_ptr<YieldTermStructure> qTS_;
};
class ProbWeightedPayoff {
public:
ProbWeightedPayoff(Time t,
ext::shared_ptr<Payoff> payoff,
ext::shared_ptr<RiskNeutralDensityCalculator> calc)
: t_(t), payoff_(std::move(payoff)), calc_(std::move(calc)) {}
Real operator()(Real x) const {
return calc_->pdf(x, t_) * (*payoff_)(std::exp(x));
}
private:
const Real t_;
const ext::shared_ptr<Payoff> payoff_;
const ext::shared_ptr<RiskNeutralDensityCalculator> calc_;
};
std::vector<Time> adaptiveTimeGrid(Size maxStepsPerYear, Size minStepsPerYear, Real decay, Time endTime) {
const Time maxDt = 1.0/maxStepsPerYear;
const Time minDt = 1.0/minStepsPerYear;
Time t=0.0;
std::vector<Time> times(1, t);
while (t < endTime) {
const Time dt = maxDt*std::exp(-decay*t)
+ minDt*(1.0-std::exp(-decay*t));
t+=dt;
times.push_back(std::min(endTime, t));
}
return times;
}
BOOST_AUTO_TEST_CASE(testLocalVolatilityRND) {
BOOST_TEST_MESSAGE("Testing Fokker-Planck forward equation "
"for local volatility process to calculate "
"risk neutral densities...");
const DayCounter dayCounter = Actual365Fixed();
const Date todaysDate = Date(28, Dec, 2012);
Settings::instance().evaluationDate() = todaysDate;
const Rate r = 0.015;
const Rate q = 0.025;
const Real s0 = 100;
const Volatility v = 0.25;
const ext::shared_ptr<Quote> spot(
ext::make_shared<SimpleQuote>(s0));
const ext::shared_ptr<YieldTermStructure> rTS(
flatRate(todaysDate, r, dayCounter));
const ext::shared_ptr<YieldTermStructure> qTS(
flatRate(todaysDate, q, dayCounter));
const ext::shared_ptr<TimeGrid> timeGrid(new TimeGrid(1.0, 101));
const ext::shared_ptr<LocalVolRNDCalculator> constVolCalc(
new LocalVolRNDCalculator(
spot, rTS, qTS,
ext::make_shared<LocalConstantVol>(todaysDate, v, dayCounter),
timeGrid, 201));
const Real rTol = 0.01, atol = 0.005;
for (Time t=0.1; t < 0.99; t+=0.015) {
const Volatility stdDev = v * std::sqrt(t);
const Real xm = - 0.5 * stdDev * stdDev +
std::log(s0 * qTS->discount(t)/rTS->discount(t));
const GaussianDistribution gaussianPDF(xm, stdDev);
const CumulativeNormalDistribution gaussianCDF(xm, stdDev);
const InverseCumulativeNormal gaussianInvCDF(xm, stdDev);
for (Real x = xm - 3*stdDev; x < xm + 3*stdDev; x+=0.05) {
const Real expectedPDF = gaussianPDF(x);
const Real calculatedPDF = constVolCalc->pdf(x, t);
const Real absDiffPDF = std::fabs(expectedPDF - calculatedPDF);
if (absDiffPDF > atol || absDiffPDF/expectedPDF > rTol) {
BOOST_FAIL("failed to reproduce forward probability density"
<< "\n time: " << t
<< "\n spot " << std::exp(x)
<< "\n calculated: " << calculatedPDF
<< "\n expected: " << expectedPDF
<< "\n abs diff: " << absDiffPDF
<< "\n rel diff: " << absDiffPDF/expectedPDF
<< "\n abs tol: " << atol
<< "\n rel tol: " << rTol);
}
const Real expectedCDF = gaussianCDF(x);
const Real calculatedCDF = constVolCalc->cdf(x, t);
const Real absDiffCDF = std::fabs(expectedCDF - calculatedCDF);
if (absDiffCDF > atol) {
BOOST_FAIL("failed to reproduce forward "
"cumulative probability density"
<< "\n time: " << t
<< "\n spot " << std::exp(x)
<< "\n calculated: " << calculatedCDF
<< "\n expected: " << expectedCDF
<< "\n abs diff: " << absDiffCDF
<< "\n abs tol: " << atol);
}
const Real expectedX = x;
const Real calculatedX = constVolCalc->invcdf(expectedCDF, t);
const Real absDiffX = std::fabs(expectedX - calculatedX);
if (absDiffX > atol || absDiffX/expectedX > rTol) {
BOOST_FAIL("failed to reproduce "
"inverse cumulative probability density"
<< "\n time: " << t
<< "\n spot " << std::exp(x)
<< "\n calculated: " << calculatedX
<< "\n expected: " << expectedX
<< "\n abs diff: " << absDiffX
<< "\n abs tol: " << atol);
}
}
}
const Time tl = timeGrid->at(timeGrid->size()-5);
const Real xl = constVolCalc->mesher(tl)->locations().front();
if (!( constVolCalc->pdf(xl+0.0001, tl) > 0.0
&& constVolCalc->pdf(xl-0.0001, tl) == 0.0)) {
BOOST_FAIL("probability outside interpolation range is not zero");
}
const Real b1 = 0.25;
const Real b2 = 0.03;
const Real b3 = 0.005;
const Real b4 = -0.02;
const Real b5 = -0.005;
const ext::shared_ptr<DumasParametricVolSurface> dumasVolSurface(
new DumasParametricVolSurface(b1, b2, b3, b4, b5, spot, rTS, qTS));
const ext::shared_ptr<BlackScholesMertonProcess> bsmProcess(
new BlackScholesMertonProcess(
Handle<Quote>(spot),
Handle<YieldTermStructure>(qTS),
Handle<YieldTermStructure>(rTS),
Handle<BlackVolTermStructure>(dumasVolSurface)));
const ext::shared_ptr<LocalVolTermStructure> localVolSurface
= ext::make_shared<NoExceptLocalVolSurface>(
Handle<BlackVolTermStructure>(dumasVolSurface),
Handle<YieldTermStructure>(rTS),
Handle<YieldTermStructure>(qTS),
Handle<Quote>(spot), b1);
const std::vector<Time> adaptiveGrid
= adaptiveTimeGrid(400, 50, 5.0, 3.0);
const ext::shared_ptr<TimeGrid> dumasTimeGrid(
new TimeGrid(adaptiveGrid.begin(), adaptiveGrid.end()));
const ext::shared_ptr<LocalVolRNDCalculator> dumasVolCalc(
new LocalVolRNDCalculator(
spot, rTS, qTS, localVolSurface, dumasTimeGrid, 401, 0.1, 1e-8));
const Real strikes[] = { 25, 50, 95, 100, 105, 150, 200, 400 };
const std::vector<Date> maturities = {
todaysDate + Period(1, Weeks), todaysDate + Period(1, Months),
todaysDate + Period(3, Months), todaysDate + Period(6, Months),
todaysDate + Period(12, Months), todaysDate + Period(18, Months),
todaysDate + Period(2, Years), todaysDate + Period(3, Years) };
for (auto maturity : maturities) {
const Time expiry
= rTS->dayCounter().yearFraction(todaysDate, maturity);
const ext::shared_ptr<PricingEngine> engine(
new FdBlackScholesVanillaEngine(
bsmProcess, std::max(Size(51), Size(expiry*101)),
201, 0, FdmSchemeDesc::Douglas(), true, b1));
const ext::shared_ptr<Exercise> exercise(new EuropeanExercise(maturity));
for (Real strike : strikes) {
const ext::shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(
(strike > spot->value()) ? Option::Call : Option::Put, strike));
VanillaOption option(payoff, exercise);
option.setPricingEngine(engine);
const Real expected = option.NPV();
const Time tx = std::max(dumasTimeGrid->at(1),
dumasTimeGrid->closestTime(expiry));
const std::vector<Real> x = dumasVolCalc->mesher(tx)->locations();
const ProbWeightedPayoff probWeightedPayoff(
expiry, payoff, dumasVolCalc);
const DiscountFactor df = rTS->discount(expiry);
const Real calculated = GaussLobattoIntegral(10000, 1e-10)(
probWeightedPayoff, x.front(), x.back()) * df;
const Real absDiff = std::fabs(expected - calculated);
if (absDiff > 0.5*atol) {
BOOST_ERROR("failed to reproduce option prices for"
<< "\n expiry: " << expiry
<< "\n strike: " << strike
<< "\n expected: " << expected
<< "\n calculated: " << calculated
<< "\n diff: " << absDiff
<< "\n abs tol: " << atol);
}
}
}
}
BOOST_AUTO_TEST_CASE(testSquareRootProcessRND) {
BOOST_TEST_MESSAGE("Testing probability density for a square root process...");
struct SquareRootProcessParams {
const Real v0, kappa, theta, sigma;
};
const SquareRootProcessParams params[]
= { { 0.17, 1.0, 0.09, 0.5 },
{ 1.0, 0.6, 0.1, 0.75 },
{ 0.005, 0.6, 0.1, 0.05 } };
for (const auto& param : params) {
const SquareRootProcessRNDCalculator rndCalculator(param.v0, param.kappa, param.theta,
param.sigma);
const Time t = 0.75;
const Time tInfty = 60.0 / param.kappa;
const Real tol = 1e-10;
for (Real v = 1e-5; v < 1.0; v += (v < param.theta) ? 0.005 : 0.1) {
const Real cdfCalculated = rndCalculator.cdf(v, t);
const Real cdfExpected = GaussLobattoIntegral(10000, 0.01*tol)(
[&](Real _x) { return rndCalculator.pdf(_x, t); }, 0, v);
if (std::fabs(cdfCalculated - cdfExpected) > tol) {
BOOST_FAIL("failed to calculate cdf"
<< "\n t: " << t
<< "\n v: " << v
<< "\n calculated: " << cdfCalculated
<< "\n expected: " << cdfExpected
<< "\n diff: " << cdfCalculated - cdfExpected
<< "\n tolerance: " << tol);
}
if (cdfExpected < (1-1e-6) && cdfExpected > 1e-6) {
const Real vCalculated = rndCalculator.invcdf(cdfCalculated, t);
if (std::fabs(v - vCalculated) > tol) {
BOOST_FAIL("failed to calculate round trip cdf <-> invcdf"
<< "\n t: " << t
<< "\n v: " << v
<< "\n cdf: " << cdfExpected
<< "\n calculated: " << vCalculated
<< "\n diff: " << v - vCalculated
<< "\n tolerance: " << tol);
}
}
const Real statPdfCalculated = rndCalculator.pdf(v, tInfty);
const Real statPdfExpected = rndCalculator.stationary_pdf(v);
if (std::fabs(statPdfCalculated - statPdfExpected) > tol) {
BOOST_FAIL("failed to calculate stationary pdf"
<< "\n v: " << v
<< "\n calculated: " << statPdfCalculated
<< "\n expected: " << statPdfExpected
<< "\n diff: " << statPdfCalculated - statPdfExpected
<< "\n tolerance: " << tol);
}
const Real statCdfCalculated = rndCalculator.cdf(v, tInfty);
const Real statCdfExpected = rndCalculator.stationary_cdf(v);
if (std::fabs(statCdfCalculated - statCdfExpected) > tol) {
BOOST_FAIL("failed to calculate stationary cdf"
<< "\n v: " << v
<< "\n calculated: " << statCdfCalculated
<< "\n expected: " << statCdfExpected
<< "\n diff: " << statCdfCalculated - statCdfExpected
<< "\n tolerance: " << tol);
}
}
for (Real q = 1e-5; q < 1.0; q+=0.001) {
const Real statInvCdfCalculated = rndCalculator.invcdf(q, tInfty);
const Real statInvCdfExpected = rndCalculator.stationary_invcdf(q);
if (std::fabs(statInvCdfCalculated - statInvCdfExpected) > tol) {
BOOST_FAIL("failed to calculate stationary inverse of cdf"
<< "\n q: " << q
<< "\n calculated: " << statInvCdfCalculated
<< "\n expected: " << statInvCdfExpected
<< "\n diff: " << statInvCdfCalculated - statInvCdfExpected
<< "\n tolerance: " << tol);
}
}
}
}
BOOST_AUTO_TEST_CASE(testBlackScholesWithSkew, *precondition(if_speed(Fast))) {
BOOST_TEST_MESSAGE(
"Testing probability density for a BSM process "
"with strike dependent volatility vs local volatility...");
const Date todaysDate = Date(3, Oct, 2016);
Settings::instance().evaluationDate() = todaysDate;
const DayCounter dc = Actual365Fixed();
const Date maturityDate = todaysDate + Period(3, Months);
const Time maturity = dc.yearFraction(todaysDate, maturityDate);
// use Heston model to create volatility surface with skew
const Real r = 0.08;
const Real q = 0.03;
const Real s0 = 100;
const Real v0 = 0.06;
const Real kappa = 1.0;
const Real theta = 0.06;
const Real sigma = 0.4;
const Real rho = -0.75;
const Handle<YieldTermStructure> rTS(flatRate(todaysDate, r, dc));
const Handle<YieldTermStructure> qTS(flatRate(todaysDate, q, dc));
const Handle<Quote> spot(ext::make_shared<SimpleQuote>(s0));
const ext::shared_ptr<HestonProcess> hestonProcess(
ext::make_shared<HestonProcess>(
rTS, qTS, spot, v0, kappa, theta, sigma, rho));
const Handle<BlackVolTermStructure> hestonSurface(
ext::make_shared<HestonBlackVolSurface>(
Handle<HestonModel>(ext::make_shared<HestonModel>(hestonProcess)),
AnalyticHestonEngine::AndersenPiterbarg,
AnalyticHestonEngine::Integration::discreteTrapezoid(128)));
const ext::shared_ptr<TimeGrid> timeGrid(new TimeGrid(maturity, 51));
const ext::shared_ptr<LocalVolTermStructure> localVol(
ext::make_shared<NoExceptLocalVolSurface>(
hestonSurface, rTS, qTS, spot, std::sqrt(theta)));
const LocalVolRNDCalculator localVolCalc(
spot.currentLink(), rTS.currentLink(), qTS.currentLink(), localVol,
timeGrid, 151, 0.25);
const HestonRNDCalculator hestonCalc(hestonProcess);
const GBSMRNDCalculator gbsmCalc(
ext::make_shared<BlackScholesMertonProcess>(
spot, qTS, rTS, hestonSurface));
const Real strikes[] = { 85, 75, 90, 110, 125, 150 };
for (Real strike : strikes) {
const Real logStrike = std::log(strike);
const Real expected = hestonCalc.cdf(logStrike, maturity);
const Real calculatedGBSM = gbsmCalc.cdf(strike, maturity);
const Real gbsmTol = 1e-5;
if (std::fabs(expected - calculatedGBSM) > gbsmTol) {
BOOST_FAIL("failed to match Heston and GBSM cdf"
<< "\n t: " << maturity
<< "\n k: " << strike
<< "\n calculated: " << calculatedGBSM
<< "\n expected: " << expected
<< "\n diff: " <<
std::fabs(calculatedGBSM - expected)
<< "\n tolerance: " << gbsmTol);
}
const Real calculatedLocalVol = localVolCalc.cdf(logStrike, maturity);
const Real localVolTol = 1e-3;
if (std::fabs(expected - calculatedLocalVol) > localVolTol) {
BOOST_FAIL("failed to match Heston and local Volatility cdf"
<< "\n t: " << maturity
<< "\n k: " << strike
<< "\n calculated: " << calculatedLocalVol
<< "\n expected: " << expected
<< "\n diff: " <<
std::fabs(calculatedLocalVol - expected)
<< "\n tolerance: " << localVolTol);
}
}
for (Real strike : strikes) {
const Real logStrike = std::log(strike);
const Real expected = hestonCalc.pdf(logStrike, maturity)/strike;
const Real calculatedGBSM = gbsmCalc.pdf(strike, maturity);
const Real gbsmTol = 1e-5;
if (std::fabs(expected - calculatedGBSM) > gbsmTol) {
BOOST_FAIL("failed to match Heston and GBSM pdf"
<< "\n t: " << maturity
<< "\n k: " << strike
<< "\n calculated: " << calculatedGBSM
<< "\n expected: " << expected
<< "\n diff: " <<
std::fabs(calculatedGBSM - expected)
<< "\n tolerance: " << gbsmTol);
}
const Real calculatedLocalVol
= localVolCalc.pdf(logStrike, maturity)/strike;
const Real localVolTol = 1e-4;
if (std::fabs(expected - calculatedLocalVol) > localVolTol) {
BOOST_FAIL("failed to match Heston and local Volatility pdf"
<< "\n t: " << maturity
<< "\n k: " << strike
<< "\n calculated: " << calculatedLocalVol
<< "\n expected: " << expected
<< "\n diff: " <<
std::fabs(calculatedLocalVol - expected)
<< "\n tolerance: " << localVolTol);
}
}
const Real quantiles[] = { 0.05, 0.25, 0.5, 0.75, 0.95 };
for (Real quantile : quantiles) {
const Real expected = std::exp(hestonCalc.invcdf(quantile, maturity));
const Real calculatedGBSM = gbsmCalc.invcdf(quantile, maturity);
const Real gbsmTol = 1e-3;
if (std::fabs(expected - calculatedGBSM) > gbsmTol) {
BOOST_FAIL("failed to match Heston and GBSM invcdf"
<< "\n t: " << maturity
<< "\n quantile: " << quantile
<< "\n calculated: " << calculatedGBSM
<< "\n expected: " << expected
<< "\n diff: " <<
std::fabs(calculatedGBSM - expected)
<< "\n tolerance: " << gbsmTol);
}
const Real calculatedLocalVol
= std::exp(localVolCalc.invcdf(quantile, maturity));
const Real localVolTol = 0.2;
if (std::fabs(expected - calculatedLocalVol) > localVolTol) {
BOOST_FAIL("failed to match Heston and local Volatility invcdf"
<< "\n t: " << maturity
<< "\n k: " << quantile
<< "\n calculated: " << calculatedLocalVol
<< "\n expected: " << expected
<< "\n diff: " <<
std::fabs(calculatedLocalVol - expected)
<< "\n tolerance: " << localVolTol);
}
}
}
BOOST_AUTO_TEST_CASE(testMassAtZeroCEVProcessRND) {
BOOST_TEST_MESSAGE("Testing the mass at zero for a "
"constant elasticity of variance (CEV) process...");
const Real f0 = 100.0;
const Time t = 2.75;
const std::pair<Real, Real> params[] = {
{0.1, 1.6},
{0.01, 2.0},
{10.0, 0.35},
{50.0, 0.1}
};
const Real tol = 1e-4;
for (const auto& param : params) {
const Real alpha = param.first;
const Real beta = param.second;
const ext::shared_ptr<CEVRNDCalculator> calculator =
ext::make_shared<CEVRNDCalculator>(f0, alpha, beta);
const Real ax = 15.0*std::sqrt(t)*alpha*std::pow(f0, beta);
const Real calculated = GaussLobattoIntegral(1000, 1e-8)(
[&](Real _x) -> Real { return calculator->pdf(_x, t); }, std::max(QL_EPSILON, f0-ax), f0+ax) +
calculator->massAtZero(t);
if (std::fabs(calculated - 1.0) > tol) {
BOOST_FAIL("failed to reproduce the total probability mass"
<< "\n alpha: " << alpha
<< "\n beta: " << beta
<< "\n prob mass: " << calculated
<< "\n tolerance: " << tol);
}
}
}
BOOST_AUTO_TEST_CASE(testCEVCDF) {
BOOST_TEST_MESSAGE("Testing CDF for a "
"constant elasticity of variance (CEV) process...");
const Real f0 = 2.1;
const Time t = 0.75;
const Real alpha = 0.1;
const Real betas[] = { 0.45, 1.25 };
const Real tol = 1e-6;
for (Size i = 1; i < std::size(betas); ++i) {
const Real beta = betas[i];
const ext::shared_ptr<CEVRNDCalculator> calculator =
ext::make_shared<CEVRNDCalculator>(f0, alpha, beta);
for (Real x = 1.3; x < 3.1; x+=0.1) {
const Real cdfValue = calculator->cdf(x, t);
const Real calculated = calculator->invcdf(cdfValue, t);
if (std::fabs(x - calculated) > tol) {
BOOST_FAIL(
"failed to reproduce the inverse cumulative probability"
<< "\n alpha: " << alpha
<< "\n beta: " << beta
<< "\n x: " << x
<< "\n calculated:" << calculated
<< "\n difference:" << x - calculated
<< "\n tolerance: " << tol);
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|