File: varianceswaps.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (294 lines) | stat: -rw-r--r-- 11,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Warren Chou
 Copyright (C) 2007, 2008 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/quotes/simplequote.hpp>
#include <ql/time/daycounters/actual365fixed.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <ql/instruments/varianceswap.hpp>
#include <ql/pricingengines/forward/replicatingvarianceswapengine.hpp>
#include <ql/pricingengines/forward/mcvarianceswapengine.hpp>
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackvariancecurve.hpp>
#include <ql/termstructures/volatility/equityfx/blackvariancesurface.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/processes/blackscholesprocess.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(VarianceSwapTests)

#undef REPORT_FAILURE
#define REPORT_FAILURE(greekName, isLong, varStrike, nominal, s, q, r, today, \
                       exDate, v, expected, calculated, error, tolerance) \
    BOOST_ERROR( \
        " variance swap with " \
        << "    underlying value: " << s << "\n" \
        << "    strike:           " << varStrike << "\n" \
        << "    nominal:          " << nominal << "\n" \
        << "    dividend yield:   " << io::rate(q) << "\n" \
        << "    risk-free rate:   " << io::rate(r) << "\n" \
        << "    reference date:   " << today << "\n" \
        << "    maturity:         " << exDate << "\n" \
        << "    volatility:       " << io::volatility(v) << "\n\n" \
        << "    expected   " << greekName << ": " << expected << "\n" \
        << "    calculated " << greekName << ": " << calculated << "\n"\
        << "    error:            " << error << "\n" \
        << "    tolerance:        " << tolerance);


struct MCVarianceSwapData {
    Position::Type type;
    Real varStrike;
    Real nominal;
    Real s;         // spot
    Rate q;         // dividend
    Rate r;         // risk-free rate
    Time t1;        // intermediate time
    Time t;         // time to maturity
    Volatility v1;  // volatility at t1
    Volatility v;   // volatility at t
    Real result;    // result
    Real tol;       // tolerance
};

struct ReplicatingVarianceSwapData {
    Position::Type type;
    Real varStrike;
    Real nominal;
    Real s;         // spot
    Rate q;         // dividend
    Rate r;         // risk-free rate
    Time t;         // time to maturity
    Volatility v;   // volatility at t
    Real result;    // result
    Real tol;       // tolerance
};

struct Datum {
    Option::Type type;
    Real strike;
    Volatility v;
};


BOOST_AUTO_TEST_CASE(testReplicatingVarianceSwap) {

    BOOST_TEST_MESSAGE("Testing variance swap with replicating cost engine...");

    ReplicatingVarianceSwapData values[] = {

        // data from "A Guide to Volatility and Variance Swaps",
        //   Derman, Kamal & Zou, 1999
        //   with maturity t corrected from 0.25 to 0.246575
        //   corresponding to Jan 1, 1999 to Apr 1, 1999

        //type, varStrike, nominal,     s,    q,    r,        t,    v,  result, tol
        {   Position::Long,      0.04,   50000, 100.0, 0.00, 0.05, 0.246575, 0.20, 0.04189, 1.0e-4}

    };

    Datum replicatingOptionData[] = {

        // data from "A Guide to Volatility and Variance Swaps",
        //   Derman, Kamal & Zou, 1999

        //Option::Type, strike, v
        { Option::Put,   50,  0.30 },
        { Option::Put,   55,  0.29 },
        { Option::Put,   60,  0.28 },
        { Option::Put,   65,  0.27 },
        { Option::Put,   70,  0.26 },
        { Option::Put,   75,  0.25 },
        { Option::Put,   80,  0.24 },
        { Option::Put,   85,  0.23 },
        { Option::Put,   90,  0.22 },
        { Option::Put,   95,  0.21 },
        { Option::Put,  100,  0.20 },
        { Option::Call, 100,  0.20 },
        { Option::Call, 105,  0.19 },
        { Option::Call, 110,  0.18 },
        { Option::Call, 115,  0.17 },
        { Option::Call, 120,  0.16 },
        { Option::Call, 125,  0.15 },
        { Option::Call, 130,  0.14 },
        { Option::Call, 135,  0.13 }
    };

    DayCounter dc = Actual365Fixed();
    Date today = Date::todaysDate();

    ext::shared_ptr<SimpleQuote> spot(new SimpleQuote(0.0));
    ext::shared_ptr<SimpleQuote> qRate(new SimpleQuote(0.0));
    ext::shared_ptr<YieldTermStructure> qTS = flatRate(today, qRate, dc);
    ext::shared_ptr<SimpleQuote> rRate(new SimpleQuote(0.0));
    ext::shared_ptr<YieldTermStructure> rTS = flatRate(today, rRate, dc);

    for (auto& value : values) {
        Date exDate = today + timeToDays(value.t, 365);
        std::vector<Date> dates(1);
        dates[0] = exDate;

        spot->setValue(value.s);
        qRate->setValue(value.q);
        rRate->setValue(value.r);

        Size options = std::size(replicatingOptionData);
        std::vector<Real> callStrikes, putStrikes, callVols, putVols;

        // Assumes ascending strikes and same min call and max put strikes
        Size j;
        for (j=0; j<options; j++) {
            if (replicatingOptionData[j].type == Option::Call) {
                callStrikes.push_back(replicatingOptionData[j].strike);
                callVols.push_back(replicatingOptionData[j].v);
            } else if (replicatingOptionData[j].type == Option::Put) {
                putStrikes.push_back(replicatingOptionData[j].strike);
                putVols.push_back(replicatingOptionData[j].v);
            } else {
                QL_FAIL("unknown option type");
            }
        }

        Matrix vols(options-1, 1);
        std::vector<Real> strikes;
        for (j=0; j<putVols.size(); j++) {
            vols[j][0] = putVols[j];
            strikes.push_back(putStrikes[j]);
        }

        for (Size k=1; k<callVols.size(); k++) {
            Size j = putVols.size()-1;
            vols[j+k][0] = callVols[k];
            strikes.push_back(callStrikes[k]);
        }

        ext::shared_ptr<BlackVolTermStructure> volTS(new
            BlackVarianceSurface(today, NullCalendar(),
                                 dates, strikes, vols, dc));

        ext::shared_ptr<GeneralizedBlackScholesProcess> stochProcess(
                             new BlackScholesMertonProcess(
                                       Handle<Quote>(spot),
                                       Handle<YieldTermStructure>(qTS),
                                       Handle<YieldTermStructure>(rTS),
                                       Handle<BlackVolTermStructure>(volTS)));


        ext::shared_ptr<PricingEngine> engine(
                          new ReplicatingVarianceSwapEngine(stochProcess, 5.0,
                                                            callStrikes,
                                                            putStrikes));

        VarianceSwap varianceSwap(value.type, value.varStrike, value.nominal, today, exDate);
        varianceSwap.setPricingEngine(engine);

        Real calculated = varianceSwap.variance();
        Real expected = value.result;
        Real error = std::fabs(calculated-expected);
        if (error > value.tol)
            REPORT_FAILURE("value", values[i].type, value.varStrike, value.nominal, value.s,
                           value.q, value.r, today, exDate, value.v, expected, calculated, error,
                           value.tol);
    }
}

BOOST_AUTO_TEST_CASE(testMCVarianceSwap) {

    BOOST_TEST_MESSAGE("Testing variance swap with Monte Carlo engine...");

    MCVarianceSwapData values[] = {

        // data from "A Guide to Volatility and Variance Swaps",
        //   Derman, Kamal & Zou, 1999
        //   with maturity t corrected from 0.25 to 0.246575
        //   corresponding to Jan 1, 1999 to Apr 1, 1999

        // exercising code using BlackVarianceCurve because BlackVarianceSurface is unreliable
        // Result should be v*v for arbitrary t1 and v1 (as long as 0<=t1<t and 0<=v1<v)

        //type, varStrike, nominal,     s,    q,    r,  t1,     t,     v1,    v, result, tol
        {   Position::Long,      0.04,   50000, 100.0, 0.00, 0.05, 0.1, 0.246575, 0.1, 0.20,   0.04, 3.0e-4}

    };


    DayCounter dc = Actual365Fixed();
    Date today = Date::todaysDate();

    ext::shared_ptr<SimpleQuote> spot(new SimpleQuote(0.0));
    ext::shared_ptr<SimpleQuote> qRate(new SimpleQuote(0.0));
    ext::shared_ptr<YieldTermStructure> qTS = flatRate(today, qRate, dc);
    ext::shared_ptr<SimpleQuote> rRate(new SimpleQuote(0.0));
    ext::shared_ptr<YieldTermStructure> rTS = flatRate(today, rRate, dc);
    std::vector<Volatility> vols(2);
    std::vector<Date> dates(2);

    for (auto& value : values) {
        Date exDate = today + timeToDays(value.t, 365);
        Date intermDate = today + timeToDays(value.t1, 365);
        ext::shared_ptr<Exercise> exercise(new EuropeanExercise(exDate));
        dates[0] = intermDate;
        dates[1] = exDate;

        spot->setValue(value.s);
        qRate->setValue(value.q);
        rRate->setValue(value.r);
        vols[0] = value.v1;
        vols[1] = value.v;

        ext::shared_ptr<BlackVolTermStructure> volTS(
                        new BlackVarianceCurve(today, dates, vols, dc, true));

        ext::shared_ptr<GeneralizedBlackScholesProcess> stochProcess(
                    new BlackScholesMertonProcess(
                                       Handle<Quote>(spot),
                                       Handle<YieldTermStructure>(qTS),
                                       Handle<YieldTermStructure>(rTS),
                                       Handle<BlackVolTermStructure>(volTS)));

        ext::shared_ptr<PricingEngine> engine;
        engine =
            MakeMCVarianceSwapEngine<PseudoRandom>(stochProcess)
            .withStepsPerYear(250)
            .withSamples(1023)
            .withSeed(42);

        VarianceSwap varianceSwap(value.type, value.varStrike, value.nominal, today, exDate);
        varianceSwap.setPricingEngine(engine);

        Real calculated = varianceSwap.variance();
        Real expected = value.result;
        Real error = std::fabs(calculated-expected);
        if (error > value.tol)
            REPORT_FAILURE("value", values[i].type, value.varStrike, value.nominal, value.s,
                           value.q, value.r, today, exDate, value.v, expected, calculated, error,
                           value.tol);
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()