1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2010, 2011, 2012 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/experimental/finitedifferences/dynprogvppintrinsicvalueengine.hpp>
#include <ql/experimental/finitedifferences/fdklugeextouspreadengine.hpp>
#include <ql/experimental/finitedifferences/fdmklugeextouop.hpp>
#include <ql/experimental/finitedifferences/fdmspreadpayoffinnervalue.hpp>
#include <ql/experimental/finitedifferences/fdmvppstepconditionfactory.hpp>
#include <ql/experimental/finitedifferences/fdsimpleextoustorageengine.hpp>
#include <ql/experimental/finitedifferences/fdsimpleklugeextouvppengine.hpp>
#include <ql/experimental/finitedifferences/vanillavppoption.hpp>
#include <ql/experimental/processes/extendedornsteinuhlenbeckprocess.hpp>
#include <ql/experimental/processes/extouwithjumpsprocess.hpp>
#include <ql/experimental/processes/gemanroncoroniprocess.hpp>
#include <ql/experimental/processes/klugeextouprocess.hpp>
#include <ql/instruments/basketoption.hpp>
#include <ql/instruments/vanillastorageoption.hpp>
#include <ql/instruments/vanillaswingoption.hpp>
#include <ql/math/generallinearleastsquares.hpp>
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/statistics/generalstatistics.hpp>
#include <ql/math/functional.hpp>
#include <ql/methods/finitedifferences/meshers/exponentialjump1dmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/meshers/fdmsimpleprocess1dmesher.hpp>
#include <ql/methods/finitedifferences/meshers/uniform1dmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/montecarlo/lsmbasissystem.hpp>
#include <ql/methods/montecarlo/multipathgenerator.hpp>
#include <ql/processes/ornsteinuhlenbeckprocess.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/time/daycounters/actualactual.hpp>
#include <deque>
#include <utility>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(VppTests)
std::function<Real(Real)> constant_b(Real b) {
return [=](Real x){ return b; };
}
ext::shared_ptr<ExtOUWithJumpsProcess> createKlugeProcess() {
Array x0(2);
x0[0] = 3.0; x0[1] = 0.0;
const Real beta = 5.0;
const Real eta = 2.0;
const Real jumpIntensity = 1.0;
const Real speed = 1.0;
const Real volatility = 2.0;
ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> ouProcess(
new ExtendedOrnsteinUhlenbeckProcess(speed, volatility, x0[0],
constant_b(x0[0])));
return ext::make_shared<ExtOUWithJumpsProcess>(
ouProcess, x0[1], beta, jumpIntensity, eta);
}
class linear {
Real alpha, beta;
public:
linear(Real alpha, Real beta) : alpha(alpha), beta(beta) {}
Real operator()(Real x) const {
return alpha + beta*x;
}
};
// for a "real" gas and power forward curve
// please see. e.g. http://www.kyos.com/?content=64
const std::vector<Real> fuelPrices = {
20.74,21.65,20.78,21.58,21.43,20.82,22.02,21.52,
21.02,21.46,21.75,20.69,22.16,20.38,20.82,20.68,
20.57,21.92,22.04,20.45,20.75,21.92,20.53,20.67,
20.88,21.02,20.82,21.67,21.82,22.12,20.45,20.74,
22.39,20.95,21.71,20.70,20.94,21.59,22.33,21.13,
21.50,21.42,20.56,21.23,21.37,21.90,20.62,21.17,
21.86,22.04,22.05,21.00,20.70,21.12,21.26,22.40,
21.31,22.24,21.96,21.02,21.71,20.48,21.36,21.75,
21.90,20.44,21.26,22.29,20.34,21.79,21.66,21.50,
20.76,20.27,20.84,20.24,21.97,20.52,20.98,21.40,
20.39,20.71,20.78,20.30,21.56,21.72,20.27,21.57,
21.82,20.57,21.33,20.51,22.32,21.99,20.57,22.11,
21.56,22.24,20.62,21.70,21.11,21.19,21.79,20.46,
22.21,20.82,20.52,22.29,20.71,21.45,22.40,20.63,
20.95,21.97,22.20,20.67,21.01,22.25,20.76,21.33,
20.49,20.33,21.94,20.64,20.99,21.09,20.97,22.17,
20.72,22.06,20.86,21.40,21.75,20.78,21.79,20.47,
21.19,21.60,20.75,21.36,21.61,20.37,21.67,20.28,
22.33,21.37,21.33,20.87,21.25,22.01,22.08,20.81,
20.70,21.84,21.82,21.68,21.24,22.36,20.83,20.64,
21.03,20.57,22.34,20.96,21.54,21.26,21.43,22.39};
const std::vector<Real> powerPrices = {
40.40,36.71,31.87,25.81,31.61,35.00,46.22,60.68,
42.45,38.01,33.84,29.79,31.84,38.53,49.23,59.92,
43.85,37.47,34.89,29.99,30.85,29.19,29.25,38.67,
36.90,25.93,22.12,20.19,17.19,19.29,13.51,18.14,
33.76,30.48,25.63,18.01,23.86,32.41,48.56,64.69,
38.42,39.31,32.73,29.97,31.41,35.02,46.85,58.12,
39.14,35.42,32.61,28.76,29.41,35.83,46.73,61.41,
61.01,59.43,60.43,66.29,62.79,62.66,57.66,51.63,
62.18,60.53,61.94,64.86,59.57,58.15,53.74,48.36,
45.64,51.21,51.54,50.79,54.50,49.92,41.58,39.81,
28.86,37.42,39.78,42.36,45.67,36.84,33.91,28.75,
62.97,63.84,62.91,68.77,64.33,61.95,59.12,54.89,
63.62,60.90,66.57,69.51,64.71,59.89,57.28,57.10,
65.09,63.82,67.52,70.51,65.59,59.36,58.22,54.64,
52.17,53.02,57.12,53.50,53.16,49.21,52.21,40.96,
49.01,47.94,49.89,53.83,52.96,50.33,51.72,46.99,
39.06,47.99,47.91,52.35,48.51,47.39,50.45,43.66,
25.62,35.76,42.76,46.51,45.62,46.79,48.76,41.00,
52.65,55.57,57.67,56.79,55.15,54.74,50.31,47.49,
53.72,55.62,55.89,58.11,54.46,52.92,49.61,44.68,
51.59,57.44,56.50,55.12,57.22,54.61,49.92,45.20};
class PathFuelPrice : public FdmInnerValueCalculator {
public:
typedef FdSimpleKlugeExtOUVPPEngine::Shape Shape;
PathFuelPrice(const MultiPathGenerator<PseudoRandom>::sample_type::value_type& path,
ext::shared_ptr<Shape> shape)
: path_(path), shape_(std::move(shape)) {}
Real innerValue(const FdmLinearOpIterator&, Time t) override {
QL_REQUIRE(t-std::sqrt(QL_EPSILON) <= shape_->back().first,
"invalid time");
const Size i = Size(t * 365U * 24U);
const Real f = std::lower_bound(shape_->begin(), shape_->end(),
std::pair<Time, Real>(t-std::sqrt(QL_EPSILON), 0.0))->second;
return std::exp(path_[2][i] + f);
}
Real avgInnerValue(const FdmLinearOpIterator& iter, Time t) override {
return innerValue(iter, t);
}
private:
const MultiPathGenerator<PseudoRandom>::sample_type::value_type& path_;
const ext::shared_ptr<Shape> shape_;
};
class PathSparkSpreadPrice : public FdmInnerValueCalculator {
public:
typedef FdSimpleKlugeExtOUVPPEngine::Shape Shape;
PathSparkSpreadPrice(Real heatRate,
const MultiPathGenerator<PseudoRandom>::sample_type::value_type& path,
ext::shared_ptr<Shape> fuelShape,
ext::shared_ptr<Shape> powerShape)
: heatRate_(heatRate), path_(path), fuelShape_(std::move(fuelShape)),
powerShape_(std::move(powerShape)) {}
Real innerValue(const FdmLinearOpIterator&, Time t) override {
QL_REQUIRE(t-std::sqrt(QL_EPSILON) <= powerShape_->back().first,
"invalid time");
const Size i = Size(t * 365U * 24U);
const Real f = std::lower_bound(
powerShape_->begin(), powerShape_->end(),
std::pair<Time, Real>(t-std::sqrt(QL_EPSILON), 0.0))->second;
const Real g = std::lower_bound(
fuelShape_->begin(),fuelShape_->end(),
std::pair<Time, Real>(t-std::sqrt(QL_EPSILON), 0.0))->second;
return std::exp(f + path_[0][i]+path_[1][i])
- heatRate_*std::exp(g + path_[2][i]);
}
Real avgInnerValue(const FdmLinearOpIterator& iter, Time t) override {
return innerValue(iter, t);
}
private:
const Real heatRate_;
const MultiPathGenerator<PseudoRandom>::sample_type::value_type& path_;
const ext::shared_ptr<Shape> fuelShape_;
const ext::shared_ptr<Shape> powerShape_;
};
ext::shared_ptr<KlugeExtOUProcess> createKlugeExtOUProcess() {
// model definition
const Real beta = 200;
const Real eta = 1.0/0.2;
const Real lambda = 4.0;
const Real alpha = 7.0;
const Real volatility_x = 1.4;
const Real kappa = 4.45;
const Real volatility_u = std::sqrt(1.3);
const Real rho = 0.7;
Array x0(2);
x0[0] = 0.0; x0[1] = 0.0;
const ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> ouProcess(
new ExtendedOrnsteinUhlenbeckProcess(alpha, volatility_x, x0[0],
constant_b(x0[0])));
const ext::shared_ptr<ExtOUWithJumpsProcess> lnPowerProcess(
new ExtOUWithJumpsProcess(ouProcess, x0[1], beta, lambda, eta));
const Real u=0.0;
const ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> lnGasProcess(
new ExtendedOrnsteinUhlenbeckProcess(kappa, volatility_u, u,
constant_b(u)));
ext::shared_ptr<KlugeExtOUProcess> klugeOUProcess(
new KlugeExtOUProcess(rho, lnPowerProcess, lnGasProcess));
return klugeOUProcess;
}
BOOST_AUTO_TEST_CASE(testGemanRoncoroniProcess) {
BOOST_TEST_MESSAGE("Testing Geman-Roncoroni process...");
/* Example induced by H. Geman, A. Roncoroni,
"Understanding the Fine Structure of Electricity Prices",
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=638322
Results are verified against the authors MatLab-Code.
http://semeq.unipmn.it/files/Ch19_spark_spread.zip
*/
const Date today = Date(18, December, 2011);
Settings::instance().evaluationDate() = today;
const DayCounter dc = ActualActual(ActualActual::ISDA);
ext::shared_ptr<YieldTermStructure> rTS = flatRate(today, 0.03, dc);
const Real x0 = 3.3;
const Real beta = 0.05;
const Real alpha = 3.1;
const Real gamma = -0.09;
const Real delta = 0.07;
const Real eps = -0.40;
const Real zeta = -0.40;
const Real d = 1.6;
const Real k = 1.0;
const Real tau = 0.5;
const Real sig2 = 10.0;
const Real a =-7.0;
const Real b =-0.3;
const Real theta1 = 35.0;
const Real theta2 = 9.0;
const Real theta3 = 0.10;
const Real psi = 1.9;
ext::shared_ptr<GemanRoncoroniProcess> grProcess(
new GemanRoncoroniProcess(x0, alpha, beta, gamma, delta,
eps, zeta, d, k, tau, sig2, a, b,
theta1, theta2, theta3, psi));
const Real speed = 5.0;
const Volatility vol = std::sqrt(1.4);
const Real betaG = 0.08;
const Real alphaG = 1.0;
const Real x0G = 1.1;
std::function<Real (Real)> f = linear(alphaG, betaG);
ext::shared_ptr<StochasticProcess1D> eouProcess(
new ExtendedOrnsteinUhlenbeckProcess(speed, vol, x0G, f,
ExtendedOrnsteinUhlenbeckProcess::Trapezodial));
std::vector<ext::shared_ptr<StochasticProcess1D> > processes = {grProcess, eouProcess};
Matrix correlation(2, 2, 1.0);
correlation[0][1] = correlation[1][0] = 0.25;
ext::shared_ptr<StochasticProcess> pArray(
new StochasticProcessArray(processes, correlation));
const Time T = 10.0;
const Size stepsPerYear = 250;
const Size steps = Size(T*Real(stepsPerYear));
TimeGrid grid(T, steps);
typedef PseudoRandom::rsg_type rsg_type;
typedef MultiPathGenerator<rsg_type>::sample_type sample_type;
rsg_type rsg = PseudoRandom::make_sequence_generator(
pArray->size()*(grid.size()-1), BigNatural(421));
GeneralStatistics npv, onTime;
MultiPathGenerator<rsg_type> generator(pArray, grid, rsg, false);
const Real heatRate = 8.0;
const Size nrTrails = 250;
for (Size n=0; n < nrTrails; ++n) {
Real plantValue = 0.0;
sample_type path = generator.next();
for (Size i=1; i <= steps; ++i) {
const Time t = Real(i)/stepsPerYear;
const DiscountFactor df = rTS->discount(t);
const Real fuelPrice = std::exp(path.value[1][i]);
const Real electricityPrice = std::exp(path.value[0][i]);
const Real sparkSpread = electricityPrice - heatRate*fuelPrice;
plantValue += std::max(0.0, sparkSpread)*df;
onTime.add((sparkSpread > 0.0) ? 1.0 : 0.0);
}
npv.add(plantValue);
}
const Real expectedNPV = 12500;
const Real calculatedNPV = npv.mean();
const Real errorEstimateNPV = npv.errorEstimate();
if (std::fabs(calculatedNPV - expectedNPV) > 3.0*errorEstimateNPV) {
BOOST_ERROR("Failed to reproduce cached price with MC engine"
<< "\n calculated: " << calculatedNPV
<< "\n expected: " << expectedNPV
<< " +/- " << errorEstimateNPV);
}
const Real expectedOnTime = 0.43;
const Real calculatedOnTime = onTime.mean();
const Real errorEstimateOnTime
= std::sqrt(calculatedOnTime*(1-calculatedOnTime))/nrTrails;
if (std::fabs(calculatedOnTime - expectedOnTime)>3.0*errorEstimateOnTime) {
BOOST_ERROR("Failed to reproduce cached price with MC engine"
<< "\n calculated: " << calculatedNPV
<< "\n expected: " << expectedNPV
<< " +/- " << errorEstimateNPV);
}
}
BOOST_AUTO_TEST_CASE(testSimpleExtOUStorageEngine) {
BOOST_TEST_MESSAGE("Testing simple-storage option based on ext. OU model...");
Date settlementDate = Date(18, December, 2011);
Settings::instance().evaluationDate() = settlementDate;
DayCounter dayCounter = ActualActual(ActualActual::ISDA);
Date maturityDate = settlementDate + Period(12, Months);
std::vector<Date> exerciseDates(1, settlementDate+Period(1, Days));
while (exerciseDates.back() < maturityDate) {
exerciseDates.push_back(exerciseDates.back()+Period(1, Days));
}
ext::shared_ptr<BermudanExercise> bermudanExercise(
new BermudanExercise(exerciseDates));
const Real x0 = 3.0;
const Real speed = 1.0;
const Real volatility = 0.5;
const Rate irRate = 0.1;
ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> ouProcess(
new ExtendedOrnsteinUhlenbeckProcess(speed, volatility, x0,
constant_b(x0)));
ext::shared_ptr<YieldTermStructure> rTS(
flatRate(settlementDate, irRate, dayCounter));
ext::shared_ptr<PricingEngine> storageEngine(
new FdSimpleExtOUStorageEngine(ouProcess, rTS, 1, 25));
VanillaStorageOption storageOption(bermudanExercise, 50, 0, 1);
storageOption.setPricingEngine(storageEngine);
const Real expected = 69.5755;
const Real calculated = storageOption.NPV();
if (std::fabs(expected - calculated) > 5e-2) {
BOOST_ERROR("Failed to reproduce cached values" <<
"\n calculated: " << calculated <<
"\n expected: " << expected);
}
}
BOOST_AUTO_TEST_CASE(testKlugeExtOUSpreadOption) {
BOOST_TEST_MESSAGE("Testing simple Kluge ext-Ornstein-Uhlenbeck spread option...");
Date settlementDate = Date(18, December, 2011);
Settings::instance().evaluationDate() = settlementDate;
DayCounter dayCounter = ActualActual(ActualActual::ISDA);
Date maturityDate = settlementDate + Period(1, Years);
Time maturity = dayCounter.yearFraction(settlementDate, maturityDate);
const Real speed = 1.0;
const Volatility vol = std::sqrt(1.4);
const Real betaG = 0.0;
const Real alphaG = 3.0;
const Real x0G = 3.0;
const Rate irRate = 0.0;
const Real heatRate = 2.0;
const Real rho = 0.5;
ext::shared_ptr<ExtOUWithJumpsProcess>
klugeProcess = createKlugeProcess();
std::function<Real (Real)> f = linear(alphaG, betaG);
ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> extOUProcess(
new ExtendedOrnsteinUhlenbeckProcess(speed, vol, x0G, f,
ExtendedOrnsteinUhlenbeckProcess::Trapezodial));
ext::shared_ptr<YieldTermStructure> rTS(
flatRate(settlementDate, irRate, dayCounter));
ext::shared_ptr<KlugeExtOUProcess> klugeOUProcess(
new KlugeExtOUProcess(rho, klugeProcess, extOUProcess));
ext::shared_ptr<Payoff> payoff(new PlainVanillaPayoff(Option::Call, 0.0));
Array spreadFactors(2);
spreadFactors[0] = 1.0; spreadFactors[1] = -heatRate;
ext::shared_ptr<BasketPayoff> basketPayoff(
new AverageBasketPayoff(payoff, spreadFactors));
ext::shared_ptr<Exercise> exercise(new EuropeanExercise(maturityDate));
BasketOption option(basketPayoff, exercise);
option.setPricingEngine(ext::shared_ptr<PricingEngine>(
new FdKlugeExtOUSpreadEngine(klugeOUProcess, rTS,
5, 200, 50, 20)));
TimeGrid grid(maturity, 50);
typedef PseudoRandom::rsg_type rsg_type;
typedef MultiPathGenerator<rsg_type>::sample_type sample_type;
rsg_type rsg = PseudoRandom::make_sequence_generator(
klugeOUProcess->factors() * (grid.size() - 1), 1234UL);
MultiPathGenerator<rsg_type> generator(klugeOUProcess, grid, rsg, false);
GeneralStatistics npv;
const Size nTrails = 20000;
for (Size i=0; i < nTrails; ++i) {
const sample_type& path = generator.next();
Array p(2);
p[0] = path.value[0].back() + path.value[1].back();
p[1] = path.value[2].back();
npv.add((*basketPayoff)(Exp(p)));
}
const Real calculated = option.NPV();
const Real expectedMC = npv.mean();
const Real mcError = npv.errorEstimate();
if (std::fabs(expectedMC - calculated) > 3*mcError) {
BOOST_ERROR("Failed to reproduce referenc values"
<< "\n calculated: " << calculated
<< "\n expected(MC): " << expectedMC
<< "\n mc error : " << mcError);
}
}
BOOST_AUTO_TEST_CASE(testVPPIntrinsicValue) {
BOOST_TEST_MESSAGE("Testing VPP step condition...");
const Date today = Date(18, December, 2011);
const DayCounter dc = ActualActual(ActualActual::ISDA);
Settings::instance().evaluationDate() = today;
// vpp parameters
const Real pMin = 8;
const Real pMax = 40;
const Size tMinUp = 2;
const Size tMinDown = 2;
const Real startUpFuel = 20;
const Real startUpFixCost = 100;
const Real fuelCostAddon = 3.0;
const ext::shared_ptr<SwingExercise> exercise(new SwingExercise(today, today + 6, 3600U));
// Expected values are calculated using mixed integer programming
// based on the gnu linear programming toolkit. For details please see:
// http://spanderen.de/
// 2011/06/23/vpp-pricing-ii-mixed-integer-linear-programming/
const Real efficiency[] = { 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.9 };
const Real expected[] = { 0.0, 2056.04, 11145.577778, 26452.04,
44512.461818, 62000.626667, 137591.911111};
for (Size i=0; i < std::size(efficiency); ++i) {
const Real heatRate = 1.0/efficiency[i];
VanillaVPPOption option(heatRate, pMin, pMax, tMinUp, tMinDown,
startUpFuel, startUpFixCost, exercise);
option.setPricingEngine(ext::shared_ptr<PricingEngine>(
new DynProgVPPIntrinsicValueEngine(fuelPrices, powerPrices,
fuelCostAddon, flatRate(0.0, dc))));
const Real calculated = option.NPV();
if (std::fabs(expected[i] - calculated) > 1e-4) {
BOOST_ERROR("Failed to reproduce reference values"
<< "\n calculated: " << calculated
<< "\n expected: " << expected[i]);
}
}
}
BOOST_AUTO_TEST_CASE(testVPPPricing, *precondition(if_speed(Slow))) {
BOOST_TEST_MESSAGE("Testing VPP pricing using perfect foresight or FDM...");
const Date today = Date(18, December, 2011);
const DayCounter dc = ActualActual(ActualActual::ISDA);
Settings::instance().evaluationDate() = today;
// vpp parameter
const Real heatRate = 2.5;
const Real pMin = 8;
const Real pMax = 40;
const Size tMinUp = 6;
const Size tMinDown = 2;
const Real startUpFuel = 20;
const Real startUpFixCost = 100;
const ext::shared_ptr<SwingExercise> exercise(new SwingExercise(today, today + 6, 3600U));
VanillaVPPOption vppOption(heatRate, pMin, pMax, tMinUp, tMinDown,
startUpFuel, startUpFixCost, exercise);
const ext::shared_ptr<KlugeExtOUProcess> klugeOUProcess
= createKlugeExtOUProcess();
const ext::shared_ptr<ExtOUWithJumpsProcess> lnPowerProcess
= klugeOUProcess->getKlugeProcess();
const ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> ouProcess
= lnPowerProcess->getExtendedOrnsteinUhlenbeckProcess();
const ext::shared_ptr<ExtendedOrnsteinUhlenbeckProcess> lnGasProcess
= klugeOUProcess->getExtOUProcess();
const Real beta = lnPowerProcess->beta();
const Real eta = lnPowerProcess->eta();
const Real lambda = lnPowerProcess->jumpIntensity();
const Real alpha = ouProcess->speed();
const Real volatility_x = ouProcess->volatility();
const Real kappa = lnGasProcess->speed();
const Real volatility_u = lnGasProcess->volatility();
const Rate irRate = 0.00;
const Real fuelCostAddon = 3.0;
const ext::shared_ptr<YieldTermStructure> rTS
= flatRate(today, irRate, dc);
const Size nHours = powerPrices.size();
typedef FdSimpleKlugeExtOUVPPEngine::Shape Shape;
ext::shared_ptr<Shape> fuelShape(new Shape(nHours));
ext::shared_ptr<Shape> powerShape(new Shape(nHours));
for (Size i=0; i < nHours; ++i) {
const Time t = (i+1)/(365*24.);
const Real fuelPrice = fuelPrices[i];
const Real gs = std::log(fuelPrice)-squared(volatility_u)
/(4*kappa)*(1-std::exp(-2*kappa*t));
(*fuelShape)[i] = Shape::value_type(t, gs);
const Real powerPrice = powerPrices[i];
const Real ps = std::log(powerPrice)-squared(volatility_x)
/(4*alpha)*(1-std::exp(-2*alpha*t))
-lambda/beta*std::log((eta-std::exp(-beta*t))/(eta-1.0));
(*powerShape)[i] = Shape::value_type(t, ps);
}
// Test: intrinsic value
vppOption.setPricingEngine(ext::shared_ptr<PricingEngine>(
new DynProgVPPIntrinsicValueEngine(fuelPrices, powerPrices,
fuelCostAddon, flatRate(0.0, dc))));
const Real intrinsic = vppOption.NPV();
const Real expectedIntrinsic = 2056.04;
if (std::fabs(intrinsic - expectedIntrinsic) > 0.1) {
BOOST_ERROR("Failed to reproduce intrinsic value"
<< "\n calculated: " << intrinsic
<< "\n expected : " << expectedIntrinsic);
}
// Test: finite difference price
const ext::shared_ptr<PricingEngine> engine(
new FdSimpleKlugeExtOUVPPEngine(klugeOUProcess, rTS,
fuelShape, powerShape, fuelCostAddon,
1, 25, 11, 10));
vppOption.setPricingEngine(engine);
const Real fdmPrice = vppOption.NPV();
const Real expectedFdmPrice = 5217.68;
if (std::fabs(fdmPrice - expectedFdmPrice) > 0.1) {
BOOST_ERROR("Failed to reproduce finite difference price"
<< "\n calculated: " << fdmPrice
<< "\n expected : " << expectedFdmPrice);
}
// Test: Monte-Carlo perfect foresight price
VanillaVPPOption::arguments args;
vppOption.setupArguments(&args);
const FdmVPPStepConditionFactory stepConditionFactory(args);
const ext::shared_ptr<FdmMesher> oneDimMesher(new FdmMesherComposite(
stepConditionFactory.stateMesher()));
const Size nStates = oneDimMesher->layout()->dim()[0];
const FdmVPPStepConditionMesher vppMesh = {0U, oneDimMesher};
const TimeGrid grid(dc.yearFraction(today, exercise->lastDate()+1),
exercise->dates().size());
typedef PseudoRandom::rsg_type rsg_type;
typedef MultiPathGenerator<rsg_type>::sample_type sample_type;
rsg_type rsg = PseudoRandom::make_sequence_generator(
klugeOUProcess->factors() * (grid.size() - 1), 1234UL);
MultiPathGenerator<rsg_type> generator(klugeOUProcess, grid, rsg, false);
GeneralStatistics npv;
const Size nTrails = 2500;
for (Size i=0; i < nTrails; ++i) {
const sample_type& path = generator.next();
const ext::shared_ptr<FdmVPPStepCondition> stepCondition(
stepConditionFactory.build(
vppMesh, fuelCostAddon,
ext::shared_ptr<FdmInnerValueCalculator>(
new PathFuelPrice(path.value, fuelShape)),
ext::shared_ptr<FdmInnerValueCalculator>(
new PathSparkSpreadPrice(heatRate, path.value,
fuelShape, powerShape))));
Array state(nStates, 0.0);
for (Size j=exercise->dates().size(); j > 0; --j) {
stepCondition->applyTo(state, grid.at(j));
state*=rTS->discount(grid.at(j))/rTS->discount(grid.at(j-1));
}
npv.add(state.back());
}
Real npvMC = npv.mean();
Real errorMC = npv.errorEstimate();
const Real expectedMC = 5250.0;
if (std::fabs(npvMC-expectedMC) > 3*errorMC) {
BOOST_ERROR("Failed to reproduce Monte-Carlo price"
<< "\n calculated: " << npvMC
<< "\n error ; " << errorMC
<< "\n expected : " << expectedMC);
}
npv.reset();
// Test: Longstaff Schwartz least squares Monte-Carlo
// implementation is not strictly correct but saves some coding
const Size nCalibrationTrails = 1000U;
std::vector<sample_type> calibrationPaths;
std::vector<ext::shared_ptr<FdmVPPStepCondition> > stepConditions;
std::vector<ext::shared_ptr<FdmInnerValueCalculator> > sparkSpreads;
sparkSpreads.reserve(nCalibrationTrails);
stepConditions.reserve(nCalibrationTrails);
calibrationPaths.reserve(nCalibrationTrails);
for (Size i=0; i < nCalibrationTrails; ++i) {
calibrationPaths.push_back(generator.next());
sparkSpreads.push_back(ext::shared_ptr<FdmInnerValueCalculator>(
new PathSparkSpreadPrice(heatRate, calibrationPaths.back().value,
fuelShape, powerShape)));
stepConditions.push_back(stepConditionFactory.build(
vppMesh, fuelCostAddon,
ext::shared_ptr<FdmInnerValueCalculator>(
new PathFuelPrice(calibrationPaths.back().value, fuelShape)),
sparkSpreads.back()));
}
const FdmLinearOpIterator iter = oneDimMesher->layout()->begin();
// prices of all calibration paths for all states
std::vector<Array> prices(nCalibrationTrails, Array(nStates, 0.0));
// regression coefficients for all states and all exercise dates
std::vector<std::vector<Array> > coeff(
nStates, std::vector<Array>(exercise->dates().size(), Array()));
// regression functions
const Size dim = 1U;
std::vector<std::function<Real(Array)> > v(
LsmBasisSystem::multiPathBasisSystem(dim, 5U, LsmBasisSystem::Monomial));
for (Size i = exercise->dates().size(); i > 0U; --i) {
const Time t = grid.at(i);
std::vector<Array> x(nCalibrationTrails, Array(dim));
for (Size j=0; j < nCalibrationTrails; ++j) {
x[j][0] = sparkSpreads[j]->innerValue(iter, t);
}
for (Size k=0; k < nStates; ++k) {
std::vector<Real> y(nCalibrationTrails);
for (Size j=0; j < nCalibrationTrails; ++j) {
y[j] = prices[j][k];
}
coeff[k][i-1] = GeneralLinearLeastSquares(x, y, v).coefficients();
for (Size j=0; j < nCalibrationTrails; ++j) {
prices[j][k] = 0.0;
for (Size l=0; l < v.size(); ++l) {
prices[j][k] += coeff[k][i-1][l]*v[l](x[j]);
}
}
}
for (Size j=0; j < nCalibrationTrails; ++j) {
stepConditions[j]->applyTo(prices[j], grid.at(i));
}
}
Real tmpValue = 0.0;
for (Size i=0; i < nTrails; ++i) {
Array x(dim), state(nStates, 0.0), contState(nStates, 0.0);
const sample_type& path = (i % 2) != 0U ? generator.antithetic() : generator.next();
const ext::shared_ptr<FdmInnerValueCalculator> fuelPrices(
new PathFuelPrice(path.value, fuelShape));
const ext::shared_ptr<FdmInnerValueCalculator> sparkSpreads(
new PathSparkSpreadPrice(heatRate, path.value,
fuelShape, powerShape));
for (Size j = exercise->dates().size(); j > 0U; --j) {
const Time t = grid.at(j);
const Real fuelPrice = fuelPrices->innerValue(iter, t);
const Real sparkSpread = sparkSpreads->innerValue(iter, t);
const Real startUpCost
= startUpFixCost + (fuelPrice + fuelCostAddon)*startUpFuel;
x[0] = sparkSpread;
for (Size k=0; k < nStates; ++k) {
contState[k] = 0.0;
for (Size l=0; l < v.size(); ++l) {
contState[k] += coeff[k][j-1][l]*v[l](x);
}
}
const Real pMinFlow = pMin*(sparkSpread - heatRate*fuelCostAddon);
const Real pMaxFlow = pMax*(sparkSpread - heatRate*fuelCostAddon);
// rollback continuation states and the path states
for (Size i=0; i < 2*tMinUp; ++i) {
if (i < tMinUp) {
state[i] += pMinFlow;
contState[i]+= pMinFlow;
}
else {
state[i] += pMaxFlow;
contState[i]+= pMaxFlow;
}
}
// dynamic programming using the continuation values
Array retVal(nStates);
for (Size i=0; i < tMinUp-1; ++i) {
retVal[i] = retVal[tMinUp + i]
= (contState[i+1] > contState[tMinUp + i+1])?
state[i+1] : state[tMinUp + i+1];
}
if (contState[2*tMinUp] >=
std::max(contState[tMinUp-1], contState[2*tMinUp-1])) {
retVal[tMinUp-1] = retVal[2*tMinUp-1] = state[2*tMinUp];
}
else if (contState[tMinUp-1] >= contState[2*tMinUp-1]) {
retVal[tMinUp-1] = retVal[2*tMinUp-1] = state[tMinUp-1];
}
else {
retVal[tMinUp-1] = retVal[2*tMinUp-1] = state[2*tMinUp-1];
}
for (Size i=0; i < tMinDown-1; ++i) {
retVal[2*tMinUp + i] = state[2*tMinUp + i+1];
}
if (contState.back() >=
std::max(contState.front(), contState[tMinUp]) - startUpCost) {
retVal.back() = state.back();
}
else if (contState.front() > contState[tMinUp]) {
retVal.back() = state.front()-startUpCost;
}
else {
retVal.back() = state[tMinUp]-startUpCost;
}
state = retVal;
}
tmpValue+=0.5*state.back();
if ((i % 2) != 0U) {
npv.add(tmpValue, 1.0);
tmpValue = 0.0;
}
}
npvMC = npv.mean();
errorMC = npv.errorEstimate();
if (std::fabs(npvMC-fdmPrice) > 3*errorMC) {
BOOST_ERROR("Failed to reproduce Least Square Monte-Carlo price"
<< "\n calculated : " << npvMC
<< "\n error : " << errorMC
<< "\n expected FDM : " << fdmPrice);
}
}
BOOST_AUTO_TEST_CASE(testKlugeExtOUMatrixDecomposition) {
BOOST_TEST_MESSAGE("Testing KlugeExtOU matrix decomposition...");
const Date today = Date(18, December, 2011);
Settings::instance().evaluationDate() = today;
const ext::shared_ptr<KlugeExtOUProcess> klugeOUProcess
= createKlugeExtOUProcess();
const Size xGrid = 50;
const Size yGrid = 20;
const Size uGrid = 20;
const Time maturity = 1;
const ext::shared_ptr<ExtOUWithJumpsProcess> klugeProcess
= klugeOUProcess->getKlugeProcess();
const ext::shared_ptr<StochasticProcess1D> ouProcess
= klugeProcess->getExtendedOrnsteinUhlenbeckProcess();
const ext::shared_ptr<FdmMesher> mesher(
new FdmMesherComposite(
ext::shared_ptr<Fdm1dMesher>(
new FdmSimpleProcess1dMesher(xGrid, ouProcess, maturity)),
ext::shared_ptr<Fdm1dMesher>(
new ExponentialJump1dMesher(yGrid,
klugeProcess->beta(),
klugeProcess->jumpIntensity(),
klugeProcess->eta())),
ext::shared_ptr<Fdm1dMesher>(
new FdmSimpleProcess1dMesher(uGrid,
klugeOUProcess->getExtOUProcess(),
maturity))));
const ext::shared_ptr<FdmLinearOpComposite> op(
new FdmKlugeExtOUOp(mesher, klugeOUProcess,
flatRate(today, 0.0, ActualActual(ActualActual::ISDA)),
FdmBoundaryConditionSet(), 16));
op->setTime(0.1, 0.2);
Array x(mesher->layout()->size());
PseudoRandom::rng_type rng(PseudoRandom::urng_type(12345UL));
for (Real& i : x) {
i = rng.next().value;
}
const Real tol = 1e-9;
const Array applyExpected = op->apply(x);
const Array applyExpectedMixed = op->apply_mixed(x);
const std::vector<SparseMatrix> matrixDecomp(op->toMatrixDecomp());
const Array applyCalculated = prod(op->toMatrix(), x);
const Array applyCalculatedMixed = prod(matrixDecomp.back(), x);
for (Size i=0; i < x.size(); ++i) {
const Real diffApply = std::fabs(applyExpected[i]-applyCalculated[i]);
if (diffApply > tol && diffApply > std::fabs(applyExpected[i])*tol) {
BOOST_ERROR("Failed to reproduce apply operation" <<
"\n expected : " << applyExpected[i] <<
"\n calculated: " << applyCalculated[i] <<
"\n diff : " << diffApply);
}
const Real diffMixed = std::fabs(applyExpectedMixed[i]-applyCalculatedMixed[i]);
if (diffMixed > tol && diffMixed > std::fabs(applyExpected[i])*tol) {
BOOST_ERROR("Failed to reproduce apply operation" <<
"\n expected : " << applyExpectedMixed[i] <<
"\n calculated: " << applyCalculatedMixed[i] <<
"\n diff : " << diffMixed);
}
}
for (Size i=0; i < 3; ++i) {
const Array applyExpectedDir = op->apply_direction(i, x);
const Array applyCalculatedDir = prod(matrixDecomp[i], x);
for (Size j=0; j < x.size(); ++j) {
const Real diff
= std::fabs((applyExpectedDir[j] - applyCalculatedDir[j]));
if (diff > tol && diff > std::fabs(applyExpectedDir[j]*tol)) {
BOOST_ERROR("Failed to reproduce apply operation" <<
"\n expected : " << applyExpectedDir[i] <<
"\n calculated: " << applyCalculatedDir[i] <<
"\n diff : " << diff);
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|