File: plotCNEWidth.Rd

package info (click to toggle)
r-bioc-cner 1.26.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 18,216 kB
  • sloc: ansic: 23,458; makefile: 6
file content (50 lines) | stat: -rw-r--r-- 1,461 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
\name{plotCNEWidth}
\alias{plotCNEWidth}

\title{
  Plot the CNE widths distribution
}
\description{
  CNE widths can follow heavy tailed distribution that are associated with power-laws.
  This function plots the reverse cumulative density distribution of CNE widths,
  and fits a discrete power-law distribution.
  Goodness of fit can also be evaluated.
}
\usage{
  plotCNEWidth(x, ...)
}
  
\arguments{
  \item{x}{
    \code{GRangePairs} object: a pair of CNEs.
  }
  \item{\dots}{
    Additional points passed to \code{plot} function.
  }
}
\details{
  The power-law distribution is associated with heavy tailed distribution.
  
  A reverse cumulative density distribution plot will be generated with optimal
  lower bound \emph{xmin}, scaling parameter\emph{alpha} for power-law fit.
}
\value{
  An invisible list of fitted model is returned.
}
\references{
  Salerno, W., Havlak, P., and Miller, J. (2006). Scale-invariant structure of strongly conserved sequence in genomic intersections and alignments. Proc. Natl. Acad. Sci. U.S.A. 103, 13121-13125.
}
\author{
  Ge Tan
}
\note{
  The power-law distribution implementation is based on the \pkg{poweRlaw} package.
}

\examples{
  dbName <- file.path(system.file("extdata", package="CNEr"),
                      "danRer10CNE.sqlite")
  cneGRangePairs <- readCNERangesFromSQLite(dbName=dbName, 
                                            tableName="danRer10_hg38_45_50")
  plotCNEWidth(cneGRangePairs)
}