1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\docType{methods}
\name{plotDispEsts}
\alias{plotDispEsts}
\alias{plotDispEsts,DESeqDataSet-method}
\title{Plot dispersion estimates}
\usage{
\S4method{plotDispEsts}{DESeqDataSet}(
object,
ymin,
CV = FALSE,
genecol = "black",
fitcol = "red",
finalcol = "dodgerblue",
legend = TRUE,
xlab,
ylab,
log = "xy",
cex = 0.45,
...
)
}
\arguments{
\item{object}{a DESeqDataSet, with dispersions estimated}
\item{ymin}{the lower bound for points on the plot, points beyond this
are drawn as triangles at ymin}
\item{CV}{logical, whether to plot the asymptotic or biological
coefficient of variation (the square root of dispersion) on the y-axis.
As the mean grows to infinity, the square root of dispersion gives
the coefficient of variation for the counts. Default is \code{FALSE},
plotting dispersion.}
\item{genecol}{the color for gene-wise dispersion estimates}
\item{fitcol}{the color of the fitted estimates}
\item{finalcol}{the color of the final estimates used for testing}
\item{legend}{logical, whether to draw a legend}
\item{xlab}{xlab}
\item{ylab}{ylab}
\item{log}{log}
\item{cex}{cex}
\item{...}{further arguments to \code{plot}}
}
\description{
A simple helper function that plots the per-gene dispersion
estimates together with the fitted mean-dispersion relationship.
}
\examples{
dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
plotDispEsts(dds)
}
\author{
Simon Anders
}
|