File: voomLmFit.R

package info (click to toggle)
r-bioc-edger 3.40.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,484 kB
  • sloc: cpp: 1,425; ansic: 1,109; sh: 21; makefile: 5
file content (267 lines) | stat: -rw-r--r-- 9,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
voomLmFit <- function(
	counts, design=NULL, block=NULL, prior.weights=NULL,
	sample.weights=FALSE, var.design=NULL, var.group=NULL, 
	lib.size=NULL, normalize.method="none",
	span=0.5, plot=FALSE, save.plot=FALSE, keep.EList=TRUE
)
#	limma+lmFit pipeline for counts taking into account of structural zeros
#	Creates an MArrayLM object for entry to eBayes() etc in the limma pipeline.
#	Depends on edgeR as well as limma
#	Gordon Smyth
#	Created 21 Jan 2020.  Last modified 16 Mar 2022.
{
	Block <- !is.null(block)
	PriorWeights <- !is.null(prior.weights)
	SampleWeights <- sample.weights || !is.null(var.design) || !is.null(var.group)

#	Can't specify prior weights and ask for sample weights to be estimated as well
	if(PriorWeights && SampleWeights) stop("Can't specify prior.weights and estimate sample weights")

#	Create output object
	out <- list()

#	Extract counts from known data objects
	if(is(counts,"SummarizedExperiment")) counts <- SE2DGEList(counts)
	if(is(counts,"DGEList")) {
		out$genes <- counts$genes
		out$targets <- counts$samples
		if(is.null(design) && diff(range(as.numeric(counts$sample$group)))>0) design <- model.matrix(~group,data=counts$samples)
		if(is.null(lib.size)) lib.size <- effectiveLibSizes(counts)
		counts <- counts$counts
	} else {
		if(is(counts,"eSet")) {
			if(!requireNamespace("Biobase",quietly=TRUE))
				stop("Biobase package required but is not installed (or can't be loaded)")
			if(length(Biobase::fData(counts))) out$genes <- Biobase::fData(counts)
			if(length(Biobase::pData(counts))) out$targets <- Biobase::pData(counts)
			counts <- get("counts",Biobase::assayData(counts))
		} else {
			counts <- as.matrix(counts)
		}
	}

#	Check counts
	n <- nrow(counts)
	if(n < 2L) stop("Need at least two genes to fit a mean-variance trend")
	m <- min(counts)
	if(is.na(m)) stop("NA counts not allowed")
	if(m < 0) stop("Negative counts not allowed")

#	Check design
	if(is.null(design)) {
		design <- matrix(1,ncol(counts),1)
		rownames(design) <- colnames(counts)
		colnames(design) <- "GrandMean"
	}

#	Check lib.size
	if(is.null(lib.size)) lib.size <- colSums(counts)

#	Expand prior.weights if necessary
	if(!is.null(prior.weights)) prior.weights <- asMatrixWeights(prior.weights,dim(counts))

#	log2-counts-per-million
	y <- t(log2(t(counts+0.5)/(lib.size+1)*1e6))

#	Microarray-style normalization
	y <- normalizeBetweenArrays(y,method=normalize.method)

#	Fit linear model
	fit <- lmFit(y,design,weights=prior.weights)

#	Find largest leverage value of design matrix
	if(is.null(fit$qr))
		h <- hat(design,intercept=FALSE)
	else
		h <- hat(fit$qr)
	MinGroupSize <- 1/max(h)

#	Identify fitted values that are exactly zero and should not contribute to the genewise variances
#	Note that a single zero is never a problem
	eps <- 1e-4
	RowHasZero <- which(rowSums(counts < eps) > (max(2,MinGroupSize)-eps))
	AnyZeroRows <- as.logical(length(RowHasZero))
	if(AnyZeroRows) {
		countsZero <- counts[RowHasZero,,drop=FALSE]
		PoissonFit <- glmFit(countsZero,design=design,lib.size=lib.size,dispersion=0,prior.count=0)
		IsZero <- (PoissonFit$fitted.values < eps & countsZero < eps)
		RowHasExactZero <- which(rowSums(IsZero) > eps)
#		If any exact zero fits, then rerun the linear model for those rows with NAs
		if(length(RowHasExactZero)) {
			RowHasZero <- RowHasZero[RowHasExactZero]
			IsZero <- IsZero[RowHasExactZero,,drop=FALSE]
			yNAshort <- y[RowHasZero,,drop=FALSE]
			yNAshort[IsZero] <- NA
			fitNA <- suppressWarnings(lmFit(yNAshort,design,weights=prior.weights[RowHasZero,,drop=FALSE]))
			fit$df.residual[RowHasZero] <- fitNA$df.residual
			fit$sigma[RowHasZero] <- fitNA$sigma
#			If blocking or sample weights are present, then we will later on need a full length copy of y with NAs inserted
			if(Block || SampleWeights) {
				yNAfull <- y
				yNAfull[RowHasZero,] <- yNAshort
			}
		} else {
			AnyZeroRows <- FALSE
		}
	}

#	If no replication found, assume all weights are 1 and return fit already computed
	HasRep <- (fit$df.residual > 0L)
	NWithReps <- sum(HasRep)
	if(NWithReps < 2L) {
		if(NWithReps == 0L) warning("The experimental design has no replication. Setting weights to 1.")
		if(NWithReps == 1L) warning("Only one gene with any replication. Setting weights to 1.")
		fit$genes <- out$genes
		return(fit)
	}

#	Fit lowess trend to sqrt-standard-deviations by log-count-size
	Amean <- Amean2 <- rowMeans(y)
	if(AnyZeroRows) Amean2[RowHasZero] <- rowMeans(yNAshort,na.rm=TRUE)
	sx <- Amean2[HasRep]+mean(log2(lib.size+1))-log2(1e6)
	sy <- sqrt(fit$sigma[HasRep])
	if(AnyZeroRows)
		l <- weightedLowess(sx,sy,span=span,weights=fit$df.residual[HasRep],output.style="lowess")
	else
		l <- lowess(sx,sy,f=span)
	if(plot) {
		plot(sx,sy,xlab="log2( count size + 0.5 )",ylab="Sqrt( standard deviation )",pch=16,cex=0.25)
		title("voom: Mean-variance trend")
		lty <- ifelse(Block || SampleWeights,2,1)
		lines(l,col="red",lty=lty)
	}

#	Make interpolating rule
	f <- approxfun(l, rule=2, ties=list("ordered",mean))

#	Find individual quarter-root fitted counts
	if(fit$rank < ncol(design)) {
		j <- fit$pivot[1:fit$rank]
		fitted.values <- fit$coefficients[,j,drop=FALSE] %*% t(fit$design[,j,drop=FALSE])
	} else {
		fitted.values <- fit$coefficients %*% t(fit$design)
	}
	fitted.cpm <- 2^fitted.values
	fitted.count <- 1e-6 * t(t(fitted.cpm)*(lib.size+1))
	fitted.logcount <- log2(fitted.count)

#	Apply trend to individual observations to get voom weights
	w <- 1/f(fitted.logcount)^4
	dim(w) <- dim(fitted.logcount)

#	Add voom weights to prior weights
	if(PriorWeights)
		weights <- w * prior.weights
	else
		weights <- w

#	Estimate sample weights?
	if(SampleWeights) {
		if(AnyZeroRows) {
			sw <- arrayWeights(yNAfull,design,weights=weights,var.design=var.design,var.group=var.group)
		} else {
			sw <- arrayWeights(y,design,weights=weights,var.design=var.design,var.group=var.group)
		}
		message("First sample weights (min/max) ", paste(format(range(sw)),collapse="/") )
		if(Block) weights <- t(sw * t(weights))
	}

#	Estimate correlation?
	if(Block) {
		if(AnyZeroRows) {
			dc <- suppressWarnings(duplicateCorrelation(yNAfull,design,block=block,weights=weights))
		} else {
			dc <- suppressWarnings(duplicateCorrelation(y,design,block=block,weights=weights))
		}
		correlation <- dc$consensus.correlation
		if(is.na(correlation)) correlation <- 0
		message("First intra-block correlation  ",format(correlation))
	} else {
		correlation <- NULL
	}

#	Seond iteration to refine intra-block correlation or sample weights
	if(Block || SampleWeights) {
#		Rerun voom weights with new correlation and sample weights
		if(SampleWeights)
			weights <- asMatrixWeights(sw,dim(y))
		else
			weights <- prior.weights
		fit <- lmFit(y,design,block=block,correlation=correlation,weights=weights)
		if(AnyZeroRows) {
			fitNA <- suppressWarnings(lmFit(yNAshort,design,block=block,correlation=correlation,weights=weights[RowHasZero,,drop=FALSE]))
			fit$df.residual[RowHasZero] <- fitNA$df.residual
			fit$sigma[RowHasZero] <- fitNA$sigma
		}
		sy <- sqrt(fit$sigma[HasRep])
		if(AnyZeroRows)
			l <- weightedLowess(sx,sy,span=span,weights=fit$df.residual[HasRep],output.style="lowess")
		else
			l <- lowess(sx,sy,f=span)
		if(plot) {
			lines(l,col="red")
			legend("topright",lty=c(2,1),col="red",legend=c("First","Final"))
		}
		f <- approxfun(l, rule=2, ties=list("ordered",mean))
		if(fit$rank < ncol(design)) {
			j <- fit$pivot[1:fit$rank]
			fitted.values <- fit$coefficients[,j,drop=FALSE] %*% t(fit$design[,j,drop=FALSE])
		} else {
			fitted.values <- fit$coefficients %*% t(fit$design)
		}
		fitted.cpm <- 2^fitted.values
		fitted.count <- 1e-6 * t(t(fitted.cpm)*(lib.size+1))
		fitted.logcount <- log2(fitted.count)
		w <- 1/f(fitted.logcount)^4
		dim(w) <- dim(fitted.logcount)
		if(PriorWeights)
			weights <- w * prior.weights
		else
			weights <- w
		if(SampleWeights) {
			if(AnyZeroRows) {
				sw <- arrayWeights(yNAfull,design,weights=weights,var.design=var.design,var.group=var.group)
			} else {
				sw <- arrayWeights(y,design,weights=weights,var.design=var.design,var.group=var.group)
			}
			message("Final sample weights (min/max) ", paste(format(range(sw)),collapse="/") )
			weights <- t(sw * t(weights))
		}
		if(Block) {
			if(AnyZeroRows) {
				dc <- suppressWarnings(duplicateCorrelation(yNAfull,design,block=block,weights=weights))
			} else {
				dc <- suppressWarnings(duplicateCorrelation(y,design,block=block,weights=weights))
			}
			correlation <- dc$consensus.correlation
			if(is.na(correlation)) correlation <- 0
			message("Final intra-block correlation  ",format(correlation))
		}
	}

#	Final linear model fit with voom weights
	fit <- lmFit(y,design,block=block,correlation=correlation,weights=weights)
	if(is.null(fit$Amean)) fit$Amean <- Amean
	if(AnyZeroRows) {
		fitNA <- suppressWarnings(lmFit(yNAshort,design,block=block,correlation=correlation,weights=weights[RowHasZero,,drop=FALSE]))
		fit$df.residual[RowHasZero] <- fitNA$df.residual
		fit$sigma[RowHasZero] <- fitNA$sigma
	}

#	Output
	fit$genes <- out$genes
	fit$targets <- out$targets
	if(is.null(fit$targets)) {
		fit$targets <- data.frame(lib.size=lib.size)
		row.names(fit$targets) <- colnames(y)
	}
	if(SampleWeights) fit$targets$sample.weight <- sw
	if(save.plot) {
		fit$voom.xy <- list(x=sx,y=sy,xlab="log2( count size + 0.5 )",ylab="Sqrt( standard deviation )")
		fit$voom.line <- l
	}
	if(keep.EList) {
		fit$EList <- new("EList",list(E=y,weights=weights,genes=out$genes))
	}
	fit
}