1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
#' Calculate the amount of lesion segregation for a GRangesList or GRanges object.
#'
#' This function calculates lesion segregation for a GRangesList or GRanges object.
#' Lesion segregation is a large scale Watson versus Crick strand asymmetry caused by
#' many DNA lesions occurring during a single cell cycle.
#' It was first described in Aitken et al., 2020, Nature.
#' See their paper for a more in-depth discussion of this phenomenon.
#' This function can perform three different types of test to calculate lesion segregation.
#' The first method is unique to this package, while the other two were also used by
#' Aitken et al., 2020.
#' The 'binomial' test is based on how often consecutive mutations are on different strands.
#' The 'wald-wolfowitz' test checks if the strands are randomly distributed. It's not known
#' which method is superior.
#' The 'rl20' test looks at run sizes (The number of consecutive mutations on the same strand).
#' This is less susceptible to local strand asymetries and kataegis, but doesn't generate a p-value.
#'
#' The amount of lesion segregation is calculated per GRanges object.
#' The results are then combined in a table.
#'
#' It's possible to calculate the lesion segregation separately per 96 substitution context,
#' when using the binomial test. The results are then automatically added back up together.
#' This can increase sensitivity when a mutational process causes multiple types of base substitutions,
#' which aren’t considered to be on the same strand.
#'
#' When using the rl20 test, this function first calculates the strand runs per chromosome
#' and combines them. It then calculates the smallest set of runs, which together encompass
#' at least 20 percent of the mutations. (This set thus contains the largest runs).
#' The size of the smallest run in this set is the rl20. The genomic span of
#' the runs in this set is also calculated.
#'
#' @param vcf_list GRangesList or GRanges object
#' @param sample_names The name of the sample
#' @param test The statistical test that should be used. Possible values:
#' * 'binomial' Binomial test based on the number of strand switches. (Default);
#' * 'wald-wolfowitz' Statistical test that checks if the strands are randomly distributed.;
#' * 'rl20' Calculates rl20 value and the genomic span of the associated runs set.;
#' @param split_by_type Boolean describing whether the lesion
#' segregation should be calculated for all SNVs together or per 96 substitution context. (Default: FALSE)
#' @param ref_genome BSgenome reference genome object.
#' Only needed when split_by_type is TRUE with the binomial test
#' or when using the rl20 test.
#' @param chromosomes The chromosomes that are used. Only needed when using the rl20 test.
#'
#' @return A tibble containing the amount of lesions segregation per sample
#' @importFrom magrittr %>%
#' @seealso
#' \code{\link{plot_lesion_segregation}}
#' @family Lesion_segregation
#' @export
#' @examples
#'
#' ## See the 'read_vcfs_as_granges()' example for how we obtained the
#' ## following data:
#' grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds",
#' package = "MutationalPatterns"
#' ))
#'
#' ## To reduce the runtime we take only the first two samples
#' grl <- grl[1:2]
#' ## Set the sample names
#' sample_names <- c("colon1", "colon2")
#'
#' ## Load the corresponding reference genome.
#' ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
#' library(ref_genome, character.only = TRUE)
#'
#' ## Calculate lesion segregation
#' lesion_segretation <- calculate_lesion_segregation(grl, sample_names)
#'
#' ## Calculate lesion segregation per 96 base type
#' lesion_segretation_by_type <- calculate_lesion_segregation(grl, sample_names,
#' split_by_type = TRUE, ref_genome = ref_genome
#' )
#'
#' ## Calculate lesion segregation using the wald-wolfowitz test.
#' lesion_segregation_wald <- calculate_lesion_segregation(grl,
#' sample_names,
#' test = "wald-wolfowitz"
#' )
#'
#' ## Calculate lesion segregation using the rl20.
#' chromosomes <- paste0("chr", c(1:22, "X"))
#' lesion_segregation_rl20 <- calculate_lesion_segregation(grl,
#' sample_names,
#' test = "rl20",
#' ref_genome = ref_genome,
#' chromosomes = chromosomes
#' )
calculate_lesion_segregation <- function(vcf_list,
sample_names,
test = c("binomial", "wald-wolfowitz", "rl20"),
split_by_type = FALSE,
ref_genome = NA,
chromosomes = NA) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
p.value <- . <- sample_name <- NULL
# Validate arguments
test <- match.arg(test)
if (test != "binomial" & split_by_type) {
stop("The 'split_by_type' argument can only be used with the binomial test",
call. = FALSE
)
}
if (length(vcf_list) != length(sample_names)) {
stop("The vcf_list and the sample_names should be equally long.", call. = FALSE)
}
if (.is_na(ref_genome)) {
if (split_by_type) {
stop("The ref_genome needs to be set when split_by_type = TRUE", call. = FALSE)
}
if (test == "rl20") {
stop("The ref_genome needs to be set when test == rl20", call. = FALSE)
}
}
if (.is_na(chromosomes) & test == "rl20") {
stop("The chromosomes need to be set when using test == rl20", call. = FALSE)
}
# Turn grl into list.
if (inherits(vcf_list, "CompressedGRangesList")) {
vcf_list <- as.list(vcf_list)
}
# Perform lesion segregation on each GR
if (inherits(vcf_list, "list")) {
strand_tb <- purrr::map2(vcf_list, sample_names, function(gr, sample_name) {
.calculate_lesion_segregation_gr(gr, sample_name, test, split_by_type, ref_genome, chromosomes)
}) %>%
do.call(rbind, .)
} else if (inherits(vcf_list, "GRanges")) {
strand_tb <- .calculate_lesion_segregation_gr(
vcf_list,
sample_names,
test,
split_by_type,
ref_genome,
chromosomes
)
} else {
.not_gr_or_grl(vcf_list)
}
# Multiple testing correction
if (test != "rl20") {
strand_tb <- dplyr::mutate(strand_tb, fdr = p.adjust(p.value, method = "fdr"))
}
# Add final columns to output
strand_tb <- strand_tb %>%
dplyr::mutate(sample_name = sample_names) %>%
dplyr::select(sample_name, dplyr::everything())
return(strand_tb)
}
#' Calculate the amount of lesion segregation for a singe GRanges object.
#'
#' @param gr GRanges object
#' @param sample_name The name of the sample
#' @param test The statistical test that should be used. Possible values:
#' * 'binomial' Binomial test based on the number of strand switches. (Default);
#' * 'wald-wolfowitz' Statistical test that checks if the strands are randomly
#' distributed.;
#' * 'rl20' Calculates rl20 value and the genomic span of the associated runs set.;
#' @param split_by_type Boolean describing whether the lesion
#' segregation should be calculated for all SNVs together or per 96 substitution context.
#' @param ref_genome BSgenome reference genome object.
#' Only needed when split_by_type is TRUE with the binomial test
#' or when using the rl20 test.
#' @param chromosomes The chromosomes that are used. Only needed when using the rl20 test.
#'
#' @return A tibble containing the amount of lesions segregation for a single sample
#' @noRd
#'
.calculate_lesion_segregation_gr <- function(gr,
sample_name = "sample",
test = c("binomial", "wald-wolfowitz", "rl20"),
split_by_type = FALSE,
ref_genome = NA,
chromosomes = NA) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
genome_span <- genome_size <- NULL
# Check if mutations are present.
if (!length(gr)) {
message(paste0(
"No mutations present in sample: ", sample_name,
"\n Returning NA"
))
return(NA)
}
# Get strand info
gr <- .get_strandedness_gr(gr)
tb <- .get_strandedness_tb(gr)
if (test == "binomial") {
# Perform analysis per base substitution type
if (split_by_type) {
# Split gr according to the 96 substitution context.
cnd <- tryCatch(suppressWarnings({
GenomeInfoDb::seqlevelsStyle(gr) <- "UCSC"
}),
error = function(cnd) cnd
)
if (inherits(cnd, "error")) {
message(paste0(
"Could not change seqlevelstyle in sample: ", sample_name, ".",
"\n Returning NA"
))
return(NA)
}
.check_chroms(gr, ref_genome)
type_context <- type_context(gr, ref_genome)
full_context <- paste0(
substr(type_context$context, 1, 1),
"[", type_context$types, "]",
substr(type_context$context, 3, 3)
)
tb_l <- split(tb, full_context)
# Calculate strand switches for each of the 96 substitutions.
res_l <- purrr::map(tb_l, .calculate_strand_switches)
x <- purrr::map(res_l, "x") %>%
unlist() %>%
sum()
n <- purrr::map(res_l, "n") %>%
unlist() %>%
sum()
res <- list("x" = x, "n" = n)
} else {
# Calculate strand switches
res <- .calculate_strand_switches(tb)
}
# Check if mutations are present
if (res$n == 0) {
message(paste0(
"No multiple mutations in one chromosome with context present in sample: ", sample_name,
"\n Returning NA"
))
return(NA)
}
# Calculate if the number of strand switches is significantly different from expected.
res <- binom.test(x = res$x, n = res$n, p = 0.5)
# Add all results together in a tibble
stat_tb <- tibble::tibble(
p.value = res$p.value,
fraction_strand_switches = res$estimate,
conf_low = res$conf.int[[1]],
conf_high = res$conf.int[[2]],
nr_strand_switches = res$statistic,
max_possible_switches = res$parameter
)
} else if (test == "wald-wolfowitz") {
# calculate if there is a significant deviation using the wald_wolfowitz_test
wolfowitz <- .wald_wolfowitz_test(tb$strand)
stat_tb <- tibble::tibble(
p.value = wolfowitz$p,
sd = wolfowitz$sd,
nr_total_runs = wolfowitz$runs_total
)
} else if (test == "rl20") {
# Calculate rl20 and genomic span
res <- .rl20_gspan(tb)
# Add total size of genome to calculate fraction.
ref_genome <- BSgenome::getBSgenome(ref_genome)
stat_tb <- res %>%
dplyr::mutate(
genome_size = sum(GenomeInfoDb::seqlengths(ref_genome)[chromosomes]),
fraction_span = genome_span / genome_size
)
}
return(stat_tb)
}
#' Determine the strands of a GRanges object
#'
#' @param gr A GRanges object
#'
#' @return A GRanges object where the strands have been set.
#' @noRd
#'
.get_strandedness_gr <- function(gr) {
.check_no_indels(gr)
strand(gr) <- ifelse(as.vector(.get_ref(gr)) %in% c("C", "T"), "+", "-")
if (length(gr)) {
GenomeInfoDb::seqlevels(gr) <- GenomeInfoDb::seqlevelsInUse(gr)
}
return(gr)
}
#' Convert a GRanges object with strand info to a tibble
#'
#' @param gr A GRanges object where the strands have been set.
#'
#' @return A tibble with strand information
#' @importFrom magrittr %>%
#' @noRd
#'
.get_strandedness_tb <- function(gr) {
tb <- as.data.frame(gr) %>%
tibble::as_tibble() %>%
dplyr::mutate(
strand = droplevels(strand),
y = dplyr::recode(strand, "+" = 1, "-" = 0),
start_mb = start / 1000000
)
return(tb)
}
#' Calculate the total number of variants and strand switches.
#'
#' @param tb A tibble with strand information
#'
#' @return A list containing the total number of variants and the number of strand switches
#' @importFrom magrittr %>%
#' @noRd
#'
.calculate_strand_switches <- function(tb) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
. <- NULL
strands_l <- split(tb$strand, tb$seqnames)
switches <- purrr::map(strands_l, .calculate_strand_switch) %>%
do.call("c", .)
res <- list("x" = sum(switches), "n" = length(switches))
return(res)
}
#' Calculate the number of strand switches in a single chromosome.
#'
#' @param strand A vector containing the strand of variants
#'
#' @return A boolean vector describing for each variant
#' if it switched strands with the previous variant.
#' @noRd
#' @importFrom magrittr %>%
#'
.calculate_strand_switch <- function(strand) {
switches <- strand != dplyr::lead(strand)
switches <- switches %>%
stats::na.omit() %>%
as.vector()
return(switches)
}
#' Perform the wald_wofowitz test for strands.
#'
#' This statistical test, tests whether each element in the sequence is
#' independently drawn from the same distribution.
#'
#' @param strands A vector of strands
#'
#' @return a p value
#'
#' @noRd
#'
.wald_wolfowitz_test <- function(strands) {
# Remove factor
strands <- as.character(strands)
# Determine sizes
n1 <- sum(strands == "+")
n2 <- sum(strands == "-")
n <- n1 + n2
# Determine number of + and - runs
runs <- rle(strands)
r1 <- length(runs$lengths[runs$values == "+"])
r2 <- length(runs$lengths[runs$values == "-"])
# Calculate total number of runs
runs_total <- r1 + r2
# Calculate mean
mean_val <- 2 * n1 * n2 / (n) + 1
# Calculate variance and sd
variance <- (mean_val - 1) * (mean_val - 2) / (n - 1)
sd <- sqrt(variance)
# Calculate p value
p <- stats::pnorm((runs_total - mean_val) / sd)
# Make two-sided
p <- 2 * min(p, 1 - p)
return(list("p" = p, "sd" = sd, "runs_total" = runs_total))
}
#' Calculate rl20 and genomic span
#'
#' This function calculates the strand runs per chromosome
#' and combines them. It then calculates the rl20. This is done by
#' calculating the smallest set of runs, which together encompass
#' at least 20% of the mutations. (This set thus contains the largest runs).
#' The size of the smallest run in this set is the rl20. The genomic span of
#' the runs in this set is also calculated.
#'
#' @param tb A tibble with strand information
#'
#' @return A list containing the rl20 and the genomic span
#' @noRd
#'
.rl20_gspan <- function(tb) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
. <- NULL
# Number of variants
n <- nrow(tb)
# Remove factor
tb <- dplyr::mutate(tb, strand = as.character(strand))
# Determine runs per chromosome
tb_l <- split(tb, tb$seqnames)
runs_l <- purrr::map(tb_l, ~ rle(.x$strand))
# Combine run lengths
run_lengths <- purrr::map(runs_l, "lengths") %>%
do.call(c, .) %>%
magrittr::set_names(NULL)
# Sort runs on size
order_i <- order(run_lengths, decreasing = TRUE)
sort_lengths <- run_lengths[order_i]
# Determine set of runs that together encompass 20% of mutations.
not_big_enough_set_size <- sum(cumsum(sort_lengths) < 0.2 * n) # Just less than 20%
set_size <- not_big_enough_set_size + 1 #+1 to get over 20%
set <- sort_lengths[seq_len(set_size)]
# Get shortest run from 20% set
rl20 <- set[set_size]
# The next section will determine the genomic span.
# To do this we need to get the position
# of variants back from the runs.
# Determine original index of the runs in set.
order_i_set <- order_i[seq_len(set_size)]
# Get the mutation indices from the runs
cumsum_runs <- cumsum(run_lengths)
# Determine index of the first mutation of the runs in set.
# The index of the last mutation in the previous run is used for this.
# If the first run is in the rl20, then it has to be set separately.
first_run_i <- which(order_i_set == 1)
if (length(first_run_i)){
order_i_set[first_run_i] <- 2
start_i <- cumsum_runs[order_i_set - 1] + 1
start_i[first_run_i] <- 1
} else{
start_i <- cumsum_runs[order_i_set - 1] + 1
}
# Determine index of the last mutation of the runs in set.
end_i <- cumsum_runs[order_i_set]
# Use the indices to get the genomic positions and calculate
# the genomic span.
genomic_spans <- tb$end[end_i] - tb$start[start_i]
genomic_span <- sum(genomic_spans)
res <- tibble::tibble("rl20" = rl20, "genome_span" = genomic_span)
return(res)
}
|