1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
|
#' Potential damage analysis for the supplied mutational contexts
#'
#' The ratio of possible 'stop gain', 'mismatches', 'synonymous mutations' and
#' 'splice site mutations' is counted per mutational context. This is done for
#' the supplied ENTREZ gene ids. This way it can be determined how damaging a
#' mutational context could be. N gives the total number of possible mutations
#' per context.
#'
#' The function works by first selecting the longest transcript per gene. The
#' coding sequence (cds) of this transcript is then assembled. Next, the
#' function loops over the reference contexts. For each context (and it's
#' reverse complement), all possible mutation locations are determined. Splice
#' site mutations are removed at this stage. It's also determined whether these
#' locations are the first, second or third base of the cds codon (mut loc).
#' Each unique combination of codon and mut loc is then counted. For each
#' combination the reference amino acid and the possible alternative amino acids
#' are determined. By comparing the reference and alternative amino acids, the
#' number of 'stop_gains', 'mismatches' and 'synonymous mutations' is
#' determined. This is then normalized per mutation context.
#' For example, mutations with the ACA context could be located in the third
#' position of a codon like TAC. This might happen 200 times in the supplied
#' genes. This TAC codon could then be mutated in either a TAA, TAG or a TAT.
#' The first two of these options would induce a stop codon, while the third one
#' would be synonymous. By summing up all codons the number of stop_gains',
#' 'mismatches' and 'synonymous mutations' is determined per mutation context.
#'
#' For mismatches the blosum62 score is also calculated. This is a score based
#' on the BLOSUM62 matrix, that describes how similar two amino acids are. This
#' score is normalized over the total amount of possible mismatches. A lower
#' score means that the amino acids in the mismatches are more dissimilar. More
#' dissimilar amino acids are more likely to have a detrimental effect.
#'
#' To identify splice sites, sequences around the splice locations are used
#' instead of the cds. The 2 bases 5' and 2 bases 3' of a splice site are
#' considered to be splice site mutation locations.
#'
#' @param contexts Vector of mutational contexts to use for the analysis.
#' @param txdb Transcription annotation database
#' @param ref_genome BSgenome reference genome object
#' @param gene_ids Entrez gene ids
#' @param verbose Boolean. Determines whether progress is printed. (Default: FALSE)
#'
#' @return A tibble with the ratio of 'stop gain', 'mismatch', 'synonymous' and
#' 'splice site' mutations per mutation context.
#' @export
#'
#' @examples
#'
#' ## See the 'mut_matrix()' example for how we obtained the
#' ## mutation matrix information:
#' mut_mat <- readRDS(system.file("states/mut_mat_data.rds",
#' package = "MutationalPatterns"
#' ))
#'
#' contexts <- rownames(mut_mat)
#'
#' ## Load the corresponding reference genome.
#' ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
#' library(ref_genome, character.only = TRUE)
#'
#' ## Load the transcription annotation database
#' ## You can obtain the database from the UCSC hg19 dataset using
#' ## Bioconductor:
#' # BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene")
#' library("TxDb.Hsapiens.UCSC.hg19.knownGene")
#' txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
#'
#' ## Here we will use the Entrez Gene IDs from several cancer
#' ## genes. In practice you might want to use larger gene lists,
#' ## but here we only use a few to keep the runtime low.
#' ## In this example we are using:
#' ## TP53, KRAS, NRAS, BRAF, BRCA2
#' gene_ids <- c(7157, 3845, 4893, 673, 675)
#'
#' ## Run the function
#' context_potential_damage_analysis(contexts, txdb, ref_genome, gene_ids)
#'
#' ## The function can provide updates about its progress.
#' ## This can be usefull when it's running slowly,
#' ## which can happen when you are using many gene_ids.
#' ## To reduce the example runtime, we don't re-run the analysis, but only show the command
#' ## context_potential_damage_analysis(contexts, txdb, ref_genome, gene_ids, verbose = TRUE)
#'
context_potential_damage_analysis <- function(contexts, txdb, ref_genome, gene_ids, verbose = FALSE) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
context <- n <- ratio <- NULL
# Check dependencies are installed.
if (!requireNamespace("GenomicFeatures", quietly = TRUE)) {
stop(paste0(
"Package 'GenomicFeatures' is needed for context_potential_damage_analysis to work. ",
"Please install it if you want to use this function."
), call. = FALSE)
}
if (!requireNamespace("AnnotationDbi", quietly = TRUE)) {
stop(paste0(
"Package 'AnnotationDbi' is needed for context_potential_damage_analysis to work. ",
"Please install it if you want to use this function."
), call. = FALSE)
}
# Get reference genome
ref_genome <- BSgenome::getBSgenome(ref_genome)
# Get DNA of exons. This is strand specific, so I don't need to worry about this.
cds_tx <- .get_cds_ranges(txdb, gene_ids)
seqs <- .get_cds_sequences(cds_tx, ref_genome)
splice_genelocs <- .get_splice_genelocs(cds_tx)
if (verbose) {
message("Finished getting the coding sequences.")
}
# Get substitution and contexts
substitution <- stringr::str_replace(contexts, "\\w.*\\[(.*)\\]\\w.*", "\\1")
l_context <- stringr::str_remove(contexts, "\\[.*")
r_context <- stringr::str_remove(contexts, ".*\\]")
ori_bases <- stringr::str_replace(contexts, "\\[(.*)>.*\\]", "\\1")
ref_base <- stringr::str_remove(substitution, ">.*")
alt_base <- stringr::str_remove(substitution, ".*>")
# Group by ori_bases, because the DNA needs to be searched based on them.
contexts_tb <- tibble::tibble(
"ori_bases" = ori_bases,
"ref_base" = ref_base,
"alt_base" = alt_base,
"l_context" = l_context,
"r_context" = r_context
) %>%
dplyr::group_by(ori_bases) %>%
dplyr::summarise(
ref_base = ref_base[[1]],
alt_bases = list(alt_base),
l_context = l_context[[1]],
r_context = r_context[[1]],
.groups = "drop_last"
) %>%
dplyr::mutate(mut_pos = stringr::str_length(l_context) + 1,
rev_mut_pos = stringr::str_length(r_context) + 1)
# Read in PAM matrix
blosum62 <- readRDS(system.file(file.path("states", "blosum62.rds"),
package = "MutationalPatterns"))
# Perform damage analysis per context.
mismatches <- purrr::map(seq_len(nrow(contexts_tb)),
.single_context_damage_analysis,
contexts_tb,
seqs,
verbose,
blosum62,
splice_genelocs) %>%
dplyr::bind_rows() %>%
dplyr::mutate(context = factor(context, levels = unique(context)))
# Perform damage analysis for splice sites
splice_muts_tb <- .potential_splice_site_damage(contexts_tb, cds_tx, ref_genome)
#Combine mismatches tibble with splice site tibble
mismatches <- rbind(mismatches, splice_muts_tb) %>%
dplyr::arrange(context) %>%
dplyr::group_by(context) %>%
dplyr::mutate(ratio = n / sum(n)) %>%
dplyr::ungroup() %>%
dplyr::select(type, context, n, ratio, blosum62)
return(mismatches)
}
#' Get cds sequences for supplied genes
#'
#' Per gene the longest transcript is used.
#'
#' @param cds_tx GRangesList object containing the cds ranges of genes
#' @param ref_genome BSgenome reference genome object
#'
#' @return DNAStringSet containing the cds sequences
#' @noRd
#'
.get_cds_sequences <- function(cds_tx, ref_genome) {
# Get sequences (per cds per transcript.)
seqs <- Biostrings::getSeq(ref_genome, cds_tx)
# Merge cds sequences per transcript
seqs <- purrr::map(as.list(seqs), function(seq) do.call(c, as.list(seq))) %>%
Biostrings::DNAStringSet()
return(seqs)
}
#' Get cds ranges for supplied genes
#'
#' Per gene the longest transcript is used.
#'
#' @param txdb Transcription annotation database
#' @param gene_ids Entrez gene ids
#'
#' @return GRangesList containing the cds ranges of genes
#' @noRd
#'
.get_cds_ranges = function(txdb, gene_ids){
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
GENEID <- tx_size <- TXNAME <- NULL
# Get cds per transcript
cds_tx <- GenomicFeatures::cdsBy(txdb, by = "tx", use.names = TRUE)
# Get sizes of transcripts
tx_sizes <- cds_tx %>%
BiocGenerics::width() %>%
sum() %>%
tibble::enframe(name = "TXNAME", value = "tx_size")
# Get gene names belonging to transcripts
withCallingHandlers(
{ # Supress the returned 1:many mapping message
gene2txname <- AnnotationDbi::select(txdb, AnnotationDbi::keys(txdb, "GENEID"),
columns = c("GENEID", "TXNAME"),
keytype = "GENEID")
},
message = function(m) {
if (grepl(" returned 1:many mapping between keys and columns", conditionMessage(m))) {
invokeRestart("muffleMessage")
}
}
)
gene2txname <- gene2txname %>%
dplyr::filter(GENEID %in% gene_ids) %>%
dplyr::inner_join(tx_sizes, by = "TXNAME")
# Keep longest transcript per gene
txname_keep <- gene2txname %>%
dplyr::group_by(GENEID) %>%
dplyr::arrange(dplyr::desc(tx_size), .by_group = TRUE) %>%
dplyr::summarise(TXNAME = TXNAME[[1]], .groups = "drop_last") %>%
dplyr::pull(TXNAME)
cds_tx <- cds_tx[names(cds_tx) %in% txname_keep]
return(cds_tx)
}
#' Get the splice site locations within genes
#'
#' This returns the position of the splice site locations,
#' within the cds of the gene.
#'
#' @param cds_tx GRangesList object containing the cds ranges of genes
#'
#' @return List containing the splice site locs in genes
#' @noRd
#'
.get_splice_genelocs = function(cds_tx){
exon_ends <- cumsum(width(cds_tx))
splice_start <- as.list(exon_ends - 1)
splice_end <- as.list(exon_ends + 2)
splice_locs_genes <- purrr::map2(splice_start, splice_end, .get_splice_single_genelocs)
return(splice_locs_genes)
}
#' Get the splice site locations within one gene
#'
#' @param starts Start position of splice site
#' @param ends End position of splice site
#'
#' @return Vector containing the splice site locs in one gene
#' @noRd
#'
.get_splice_single_genelocs = function(starts, ends){
splice_locs_l <- purrr::map2(starts, ends, ~seq(.x, .y))
splice_locs <- unlist(splice_locs_l)
return(splice_locs)
}
#' Get the potential damage per mutational context
#'
#' @param i Index of the mutational contexts
#' @param contexts_tb A tibble containing the mutational contexts
#' @param seqs DNAStringSet containing the cds sequences
#' @param verbose Boolean. Determines whether progress is printed. (Default: FALSE)
#' @param blosum62 Blosum62 matrix
#' @param splice_genelocs List containing the splice site locs in genes
#'
#' @return A tibble with the ratio of 'stop gain', 'mismatch' and 'synonymous' mutations
#' for one mutation context.
#' @noRd
#'
.single_context_damage_analysis <- function(i, contexts_tb, seqs, verbose, blosum62, splice_genelocs) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
alt_base <- context <- n <- NULL
# Get data from this context
contexts_tb <- contexts_tb[i, ]
ori_bases <- contexts_tb$ori_bases
ref_base <- contexts_tb$ref_base
alt_bases <- contexts_tb$alt_bases[[1]]
l_context <- contexts_tb$l_context
r_context <- contexts_tb$r_context
mut_pos <- contexts_tb$mut_pos
rev_mut_pos <- contexts_tb$rev_mut_pos
# Count muttypes for forward context
muttype_counts <- .single_context_damage_analysis_strand(ori_bases,
ref_base,
alt_bases,
seqs,
mut_pos,
blosum62,
splice_genelocs) %>%
dplyr::mutate(context = paste0(l_context, "[", ref_base, ">", alt_base, "]", r_context)) %>%
dplyr::select(type, context, n, blosum62)
# Get reverse context
rev_ori_bases <- ori_bases %>%
Biostrings::DNAString() %>%
Biostrings::reverseComplement() %>%
as.character()
rev_ref_base <- ref_base %>%
Biostrings::DNAString() %>%
Biostrings::reverseComplement() %>%
as.character()
rev_alt_bases <- alt_bases %>%
Biostrings::DNAStringSet() %>%
Biostrings::reverseComplement() %>%
as.character()
# Count muttypes for reverse context
muttype_counts_rev <- .single_context_damage_analysis_strand(rev_ori_bases,
rev_ref_base,
rev_alt_bases,
seqs,
rev_mut_pos,
blosum62,
splice_genelocs)
# Combine forward and reverse context
muttype_counts$n <- muttype_counts$n + muttype_counts_rev$n
muttype_counts$blosum62 <- muttype_counts$blosum62 + muttype_counts_rev$blosum62
# Normalize
norm_muttype_counts <- muttype_counts %>%
dplyr::mutate(blosum62 = ifelse(type == "Missense",
blosum62 / n,
NA)) %>%
dplyr::select(type, context, n, blosum62)
if (verbose) {
message(paste0("Finished with the ", ori_bases, " context."))
}
return(norm_muttype_counts)
}
#' Get the potential damage per mutational context for a single strand
#'
#' @param ori_bases Mutational context
#' @param ref_base Reference base
#' @param alt_bases Vector of possible alternative bases
#' @param seqs DNAStringSet containing the cds sequences
#' @param mut_pos Mutation position within context
#' @param blosum62 Blosum62 matrix
#' @param splice_genelocs List containing the splice site locs in genes
#'
#' @return A tibble with the number of 'stop gain', 'mismatch' and 'synonymous' mutations
#' for one mutation context on one strand.
#' @noRd
#'
.single_context_damage_analysis_strand <- function(ori_bases,
ref_base,
alt_bases,
seqs,
mut_pos,
blosum62,
splice_genelocs) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
loc <- dna <- NULL
# Determine reference codons and mutation location
ori_bases_biostring <- Biostrings::DNAString(ori_bases)
ref_mut_loc_l <- purrr::map2(as.list(seqs), splice_genelocs, .get_ref_codons, ori_bases_biostring, mut_pos)
# Get ref codons from list
ref_codons_l <- purrr::map(ref_mut_loc_l, "ref_codons")
names(ref_codons_l) <- NULL
ref_codons <- do.call(c, ref_codons_l)
# Get mutation locations in codons from list
mut_loc_in_codon_l <- purrr::map(ref_mut_loc_l, "mut_loc_in_codon")
names(mut_loc_in_codon_l) <- NULL
mut_loc_in_codon <- do.call(c, mut_loc_in_codon_l)
# Count how often each combination of codon and mutated base location occurs
tb <- tibble::tibble("loc" = mut_loc_in_codon, "dna" = as.vector(ref_codons))
counts <- tb %>%
dplyr::group_by(loc, dna) %>%
dplyr::count() %>%
dplyr::ungroup()
# Calculate the occuring mismatch for each combi of codon and mut base location.
muttype_counts <- purrr::map(alt_bases, .calculate_mismatches, counts, blosum62) %>%
dplyr::bind_rows() %>%
dplyr::mutate(ori_bases = ori_bases, ref_base = ref_base)
return(muttype_counts)
}
#' Get reference codons for one gene
#'
#' The reference codons are determined for one context
#' and one gene. Splice site mutations are removed.
#'
#' @param seq DNAString containing the cds for one gene
#' @param splice_single_genelocs vector containing the splice site locs in genes
#' @param ori_bases Mutational context
#' @param mut_pos Mutation position within context
#'
#' @return List. Containing reference codons and
#' the position of the possible mutation in the codon.
#' @noRd
#'
.get_ref_codons <- function(seq, splice_single_genelocs, ori_bases, mut_pos) {
# Determine locations of context in dna
locs <- Biostrings::matchPattern(ori_bases, seq)
# Determine locations of mut in dna
locs_mutbase <- start(locs) + mut_pos - 1
# Remove splice site mutations
locs_mutbase <- locs_mutbase[!locs_mutbase %in% splice_single_genelocs]
# Get the reference codons
exon_codons <- Biostrings::codons(seq)
codon_nr <- ceiling(locs_mutbase / 3)
ref_codons <- Biostrings::DNAStringSet(exon_codons[codon_nr])
# Determine mutation location in reference
mut_loc_in_codon <- dplyr::case_when(
locs_mutbase %% 3 == 0 ~ 3,
locs_mutbase %% 3 == 2 ~ 2,
locs_mutbase %% 3 == 1 ~ 1
)
return(list("ref_codons" = ref_codons, "mut_loc_in_codon" = mut_loc_in_codon))
}
#' Calculate the possible mismatches for each of the codons
#' for one possible alternative base.
#'
#' @param alt_base Alternative base
#' @param counts Tibble of all codons.
#'
#' @return A tibble with the number of 'stop gain', 'mismatch' and 'synonymous' mutations
#' for one mutation context on one strand for one alternative base.
#' @noRd
#'
.calculate_mismatches <- function(alt_base, counts, blosum62) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
n <- ref_aa <- mut_aa <- NULL
ref_codons_sum <- Biostrings::DNAStringSet(counts$dna)
mut_loc_in_codon_sum <- counts$loc
# Calculate mutated codons.
mut_codons <- purrr::map2(as.list(ref_codons_sum), mut_loc_in_codon_sum, .mutate_codon, alt_base) %>%
Biostrings::DNAStringSet()
# Translate reference codons
counts$ref_aa <- ref_codons_sum %>%
Biostrings::translate() %>%
as.vector()
# Translate mutated codons
counts$mut_aa <- mut_codons %>%
Biostrings::translate() %>%
as.vector()
# Identify stop_gain, missense and synonymous mutations
counts <- counts %>%
dplyr::mutate(type = dplyr::case_when(
mut_aa == "*" & ref_aa != "*" ~ "Stop_gain",
mut_aa != ref_aa ~ "Missense",
mut_aa == ref_aa ~ "Synonymous"
))
# Add the BLOSUM scores
blosum_index <- counts %>%
dplyr::select(ref_aa, mut_aa) %>%
as.matrix()
counts$blosum62 <- blosum62[blosum_index] * counts$n
# Count the number of stop_gain, missense and synonymous.
# Also sum up the PAM scores.
counts <- counts %>%
dplyr::mutate(type = factor(type, levels = c("Stop_gain", "Missense", "Synonymous"))) %>%
dplyr::group_by(type, .drop = FALSE) %>%
dplyr::summarise(n = sum(n), blosum62 = sum(blosum62), .groups = "drop_last") %>%
dplyr::mutate(alt_base = alt_base)
return(counts)
}
#' Mutate codons with an alternative base
#'
#' @param ref_codon A reference codon
#' @param mut_loc_in_codon The location of the mutation in the codon
#' @param alt_base The alternative base that will be inserted
#'
#' @return A mutated version of the codon
#' @noRd
#'
.mutate_codon <- function(ref_codon, mut_loc_in_codon, alt_base) {
ref_codon[mut_loc_in_codon] <- alt_base
return(ref_codon)
}
#' Determine potential splice site damage
#'
#' @param contexts_tb A tibble containing the mutational contexts
#' @param cds_tx GRangesList object containing the cds ranges of genes
#' @param ref_genome BSgenome reference genome object
#'
#' @return tibble containing splice site damage
#' @noRd
#'
.potential_splice_site_damage = function(contexts_tb, cds_tx, ref_genome){
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
alt_bases <- l_context <- r_context <- ref_base <- NULL
context <- n <- blosum62 <- NULL
# Get splice site sequences
context_l <- max(c(stringr::str_length(contexts_tb$l_context),
stringr::str_length(contexts_tb$r_context)))
splice_seqs <- .get_splice_site_sequences(cds_tx, ref_genome, context_l)
# Determine nr matched splices per context
nr_matched_splices <- .find_potential_splice_site_muts(contexts_tb, splice_seqs)
# Separate alternative bases
splice_muts_tb <- contexts_tb %>%
dplyr::mutate(n = nr_matched_splices) %>%
tidyr::unnest(alt_bases) %>%
dplyr::mutate(context = paste0(l_context, "[", ref_base, ">", alt_bases, "]", r_context),
type = "splice_site",
blosum62 = NA) %>%
dplyr::select(type, context, n, blosum62)
return(splice_muts_tb)
}
#' Finds potential splice site muts based on contexts and splice site sequences
#'
#'
#' @param contexts_tb A tibble containing the mutational contexts
#' @param splice_seqs DNAStringSet of splice site sequences
#'
#' @return Vector with the number of potential splice mutations per context
#' @noRd
#'
.find_potential_splice_site_muts = function(contexts_tb, splice_seqs){
# Get unique splice site sequences
splice_seqs_table <- BiocGenerics::table(splice_seqs)
splice_seqs <- Biostrings::DNAStringSet(names(splice_seqs_table))
nr_splice_seqs = as.vector(splice_seqs_table)
#Forward context
ori_bases <- Biostrings::DNAStringSet(contexts_tb$ori_bases)
nr_matched_splices <- .find_potential_splice_site_muts_strand(ori_bases,
splice_seqs,
nr_splice_seqs)
#Reverse context
rev_ori_bases <- Biostrings::reverseComplement(ori_bases)
nr_matched_splices_rev <- .find_potential_splice_site_muts_strand(rev_ori_bases,
splice_seqs,
nr_splice_seqs)
#Combine both contexts
nr_matched_splices <- nr_matched_splices + nr_matched_splices_rev
return(nr_matched_splices)
}
#' Finds potential splice site muts based on forward/reverse context and splice site sequences
#'
#' @param ori_bases Mutational context
#' @param splice_seqs DNAStringSet of splice site sequences
#' @param nr_splice_seqs Vector with the number of potential splice mutations per context
#'
#' @return Vector with the number of potential splice mutations per context for one strand
#' @noRd
#'
.find_potential_splice_site_muts_strand = function(ori_bases, splice_seqs, nr_splice_seqs){
nr_matched_splices <- purrr::map(as.list(ori_bases), Biostrings::vmatchPattern, splice_seqs) %>%
purrr::map(S4Vectors::elementNROWS) %>%
purrr::map(function(x) x > 0) %>%
purrr::map_dbl(function(x) sum(x * nr_splice_seqs))
return(nr_matched_splices)
}
#' Get splice site sequences for supplied genes
#'
#' The 4 bases around the splice site plus the length of
#' the context is taken. This way potential mutations in
#' the 4 bases can be found.
#'
#' @param cds_tx GRangesList object containing the cds ranges of genes
#' @param ref_genome BSgenome reference genome object
#' @param context_l Mutation context length
#'
#' @return DNAStringSet containing the splice site sequences
#' @noRd
#'
.get_splice_site_sequences = function(cds_tx, ref_genome, context_l) {
# Get cds GRanges
splice_grl = .get_splice_site_ranges(cds_tx, context_l)
# Get sequences (per cds per transcript.)
seqs <- Biostrings::getSeq(ref_genome, splice_grl) %>%
unlist()
return(seqs)
}
#' Get splice site ranges for supplied genes.
#'
#' @param cds_tx GRangesList object containing the cds ranges of genes
#' @param context_l Mutation context length
#'
#' @return GRangesList containing the splice site ranges of genes
#' @noRd
#'
.get_splice_site_ranges = function(cds_tx, context_l){
splice_grl <- purrr::map(as.list(cds_tx),
.get_splice_site_ranges_gr,
context_l) %>%
GenomicRanges::GRangesList()
return(splice_grl)
}
#' Get splice site ranges for one gene.
#'
#' @param cds_gr GRanges containing the cds ranges of one gene
#' @param context_l Mutation context length
#'
#' @return GRanges containing the splice site ranges of one gene
#' @noRd
#'
.get_splice_site_ranges_gr = function(cds_gr, context_l){
# Create separate GRanges for start and end of splice sites.
start_splice <- end_splice <- cds_gr
# Set coordinates to the 4 bases around the splice site plus context
BiocGenerics::end(start_splice) <- BiocGenerics::start(start_splice) + 1 + context_l
BiocGenerics::start(start_splice) <- BiocGenerics::start(start_splice) - 2 - context_l
BiocGenerics::start(end_splice) <- BiocGenerics::end(end_splice) - 1 - context_l
BiocGenerics::end(end_splice) <- BiocGenerics::end(end_splice) + 2 + context_l
# Remove start and end of gene, because there is no splicing there.
start_splice <- start_splice[-1]
end_splice <- end_splice[-length(end_splice)]
#Combine start and end splice sites.
splices_gr = c(start_splice, end_splice)
return(splices_gr)
}
|