File: plot_compare_profiles.R

package info (click to toggle)
r-bioc-mutationalpatterns 3.16.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,360 kB
  • sloc: sh: 8; makefile: 2
file content (212 lines) | stat: -rw-r--r-- 7,117 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#' Compare two 96 mutation profiles
#'
#' Plots two 96 mutation profiles and their difference, reports the residual
#' sum of squares (RSS).
#'
#' @param profile1 First 96 mutation profile
#' @param profile2 Second 96 mutation profile
#' @param profile_names Character vector with names of the mutations profiles
#' used for plotting, default = c("profile 1", "profile 2")
#' @param profile_ymax Maximum value of y-axis (relative contribution) for
#' profile plotting. This can only be used to increase the y axis.
#' If bars fall outside this limit, the maximum value is
#' automatically increased. default = 0.2.
#' @param diff_ylim Y-axis limits for profile difference plot,
#' default = c(-0.02, 0.02)
#' @param colors 6 value color vector
#' @param condensed More condensed plotting format. Default = F.
#' @return 96 spectrum plot of profile 1, profile 2 and their difference
#'
#' @import ggplot2
#'
#' @examples
#' ## See the 'mut_matrix()' example for how we obtained the following
#' ## mutation matrix.
#' mut_mat <- readRDS(system.file("states/mut_mat_data.rds",
#'   package = "MutationalPatterns"
#' ))
#'
#' ## Extracting signatures can be computationally intensive, so
#' ## we use pre-computed data generated with the following command:
#' # nmf_res <- extract_signatures(mut_mat, rank = 2)
#'
#' nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
#'   package = "MutationalPatterns"
#' ))
#'
#' ## Compare the reconstructed 96-profile of sample 1 with the original profile
#' ## The same thing could be done with a reconstructed profile from signature refitting.
#' plot_compare_profiles(mut_mat[, 1],
#'   nmf_res$reconstructed[, 1],
#'   profile_names = c("Original", "Reconstructed")
#' )
#'
#' ## You could also compare regular mutation profiles with eachother.
#' plot_compare_profiles(
#'   mut_mat[, 1],
#'   mut_mat[, 2]
#' )
#'
#'
#' ## You can also change the y limits.
#' ## This can be done separately for the profiles and the different facets.
#' plot_compare_profiles(mut_mat[, 1],
#'   mut_mat[, 2],
#'   profile_ymax = 0.3,
#'   diff_ylim = c(-0.03, 0.03)
#' )
#' @seealso
#' \code{\link{mut_matrix}},
#' \code{\link{extract_signatures}},
#' \code{\link{plot_compare_indels}},
#' \code{\link{plot_compare_dbs}},
#' \code{\link{plot_compare_mbs}}
#'
#' @export
#'
plot_compare_profiles <- function(profile1,
                                  profile2,
                                  profile_names = c("profile 1", "profile 2"),
                                  profile_ymax = 0.2,
                                  diff_ylim = c(-0.02, 0.02),
                                  colors = NA,
                                  condensed = FALSE) {
  # These variables use non standard evaluation.
  # To avoid R CMD check complaints we initialize them to NULL.
  value <- substitution <- Sample <- Contribution <- Signature <- variable <- NULL
  full_context <- context <- NULL

  # if colors parameter not provided, set to default colors
  if (.is_na(colors)) {
    colors <- COLORS6
  }

  # Create a comparison of the profiles.
  comp <- .create_profile_comparison(profile1, profile2, profile_names)


  # Get substitution and context. Then make data long for plotting.
  df <- comp$matrix %>%
    as.data.frame() %>%
    tibble::rownames_to_column("full_context") %>%
    dplyr::mutate(
      substitution = stringr::str_replace(full_context, "\\w\\[(.*)\\]\\w", "\\1"),
      context = stringr::str_replace(full_context, "\\[.*\\]", "\\.")
    ) %>%
    dplyr::select(-full_context) %>%
    tidyr::pivot_longer(c(-substitution, -context), names_to = "sample", values_to = "value") %>%
    dplyr::mutate(sample = factor(sample, levels = unique(sample)))


  # Add dummy non_visible data points to force y axis limits per facet
  df_blank <- .create_dummy_limits(df[, c("substitution", "context")], profile_names, profile_ymax, diff_ylim)

  # Plotting parameters
  if (condensed == TRUE) {
    width <- 1
    spacing <- 0
  } else {
    width <- 0.6
    spacing <- 0.5
  }

  # Create plot
  plot <- ggplot(data = df, aes(
    x = context,
    y = value,
    fill = substitution,
    width = width
  )) +
    geom_bar(
      stat = "identity",
      position = "identity",
      colour = "black", size = .2
    ) +
    geom_blank(data = df_blank, aes(x = context, y = value)) +
    scale_fill_manual(values = colors) +
    facet_grid(sample ~ substitution, scales = "free_y") +
    labs(
      y = "Relative contribution",
      title = comp$title
    ) +
    guides(fill = "none") +
    theme_bw() +
    theme(
      axis.title.y = element_text(size = 12, vjust = 1),
      axis.text.y = element_text(size = 8),
      axis.title.x = element_text(size = 12),
      axis.text.x = element_text(size = 5, angle = 90, vjust = 0.5),
      strip.text.x = element_text(size = 14),
      strip.text.y = element_text(size = 14),
      panel.grid.major.x = element_blank(),
      panel.spacing.x = unit(spacing, "lines")
    )

  return(plot)
}


#' Create a relative comparison between two profiles.
#'
#' Create a matrix with the relative profiles and the difference.
#'
#' @param profile1 First mutation profile
#' @param profile2 Second mutation profile
#' @param profile_names Character vector with names of the mutations profiles
#' used for plotting
#'
#' @return matrix with the relative profiles and the difference
#' @noRd
#'
.create_profile_comparison <- function(profile1, profile2, profile_names) {
  s1_relative <- profile1 / sum(profile1)
  s2_relative <- profile2 / sum(profile2)
  diff <- s1_relative - s2_relative

  # residual sum of squares
  RSS <- sum(diff^2)
  RSS <- format(RSS, scientific = TRUE, digits = 3)

  # calculate cosine similarity between the two profiles
  cosine_sim <- cos_sim(profile1, profile2)
  # round
  cosine_sim <- round(cosine_sim, 3)

  # Create title
  title <- paste0("RSS = ", RSS, "; Cosine similarity = ", cosine_sim)

  # Combine samples and diff.
  x <- BiocGenerics::cbind(s1_relative, s2_relative, diff)
  colnames(x) <- c(profile_names, "Difference")

  res <- list("title" = title, "matrix" = x)
  return(res)
}


#' Create a dummy data frame with y-axis limits
#'
#' This functions creates dummy dataframe with y-axis limits for the relative profiles,
#' as well as the diff profile. The result can be used by ggplot to change the y axis
#' separately for the profiles and diffs.
#'
#' @param df Dataframe with the mutation types
#' @param profile_names Character vector with names of the mutations profiles
#' used for plotting
#' @param profile_ymax Maximum value of y-axis (relative contribution) for
#' profile plotting
#' @param diff_ylim Y-axis limits for profile difference plot
#'
#' @return Dataframe with y-axis limits
#' @noRd
#' @importFrom magrittr %>%
#'
.create_dummy_limits <- function(df, profile_names, profile_ymax, diff_ylim) {
  df_dummy <- df[c(1, 1, 1, 1), ] %>%
    dplyr::mutate(
      sample = c(profile_names, "Difference", "Difference"),
      sample = factor(sample, levels = unique(sample)),
      value = c(profile_ymax, profile_ymax, diff_ylim[1], diff_ylim[2])
    )
  return(df_dummy)
}