1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#' Plot the strands of variants to show lesion segregation
#'
#' The strands of variants in a GRanges object is plotted.
#' This way the presence of any lesion segregation is visualized.
#' The function can plot either a single or multiple samples.
#' Per chromosome, the ratio of the mutations on the chromosomal strands is
#' visualised by a line. The position of this line is calculated as the mean of
#' the "+" and "-" strand, where "+" equals 1 and "-" equals 0. In other words:
#' this line lies between the two strands if the mutations are equally
#' distributed between them, and approaches a strand if the majority of
#' mutations on a chromosome lie on that strand.
#'
#' @param vcf GRanges or RGrangesList object.
#' @param per_chrom Boolean. Determines whether to create a separate plot per chromosome.
#' @param sample_name Name of the sample. Is used as the title of the plot.
#' Not very useful if you have more than one sample.
#' @param min_muts_mean Integer. The minimum of mutations, required for the mean strand
#' of a chromosome to be calculated.
#' @param chromosomes Character vector. Determines chromosomes to be used and their order.
#' @param subsample Double between 0 and 1. Subsamples the amount of mutations to create
#' a plot with less dots. Such a plot is easier to modify in a vector program like illustrator.
#' (default: NA)
#'
#' @return ggplot2 object
#' @export
#' @seealso
#' \code{\link{calculate_lesion_segregation}}
#' @family Lesion_segregation
#' @examples
#'
#' ## See the 'read_vcfs_as_granges()' example for how we obtained the
#' ## following data:
#' grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds",
#' package = "MutationalPatterns"
#' ))
#'
#' ## Plot lesion segregation
#' plot_lesion_segregation(grl[1:3])
#'
#' ## Select a single GRanges object to plot.
#' gr <- grl[[1]]
#'
#' ## Plot lesion segregation for a single sample.
#' ## Also add a title to the plot.
#' plot_lesion_segregation(gr, sample_name = "Colon1")
#'
#' ## Plot lesion segregation per chromosome.
#' ## We here store the results in a list.
#' figure_l = plot_lesion_segregation(gr, per_chrom = TRUE, sample_name = "Colon1")
#'
#' ## Plot specific chromosomes in a user specified order
#' plot_lesion_segregation(grl[1:3], chromosomes = c(2,3))
#'
#' ## Subsample the mutations, so less points are plotted.
#' plot_lesion_segregation(grl[1:3], subsample = 0.2)
#'
plot_lesion_segregation <- function(vcf,
per_chrom = FALSE,
sample_name = NA,
min_muts_mean = 10,
chromosomes = NA,
subsample = NA) {
# Argument name is vcf, because the function previously only worked on a single GRanges.
# Because the function now also works on a GRangesList, the name vcf_list is used internally.
vcf_list <- vcf
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
max_pos <- start_mb <- notused <- n <- y <- NULL
# Convert list to grl if necessary
if (inherits(vcf_list, "list")) {
vcf_list <- GenomicRanges::GRangesList(vcf_list)
}
# Genome is set to NULL to ensure seqlevels can be changed.
GenomeInfoDb::genome(vcf_list) <- NA
GenomeInfoDb::seqlevelsStyle(vcf_list) <- "NCBI" # This takes less space when plotting
# Subsample the amount of mutations if necessary
if (!is.na(subsample)){
if (inherits(vcf_list, "CompressedGRangesList")){
vcf_list <- purrr::map(as.list(vcf_list), .subsample_granges, subsample) %>%
GenomicRanges::GRangesList()
} else if (inherits(vcf_list, "GRanges")) {
vcf_list <- .subsample_granges(vcf_list, subsample)
} else {
.not_gr_or_grl(vcf_list)
}
}
# get strandedness
if (inherits(vcf_list, "CompressedGRangesList")){
tb <- purrr::map(as.list(vcf_list), function(vcf) {
gr <- .get_strandedness_gr(vcf)
tb <- .get_strandedness_tb(gr)
return(tb)
}) %>%
dplyr::bind_rows(.id = "sample")
sample_names <- names(vcf_list)
nr_samples <- length(vcf_list)
max_nr_mutations <- max(S4Vectors::elementNROWS(vcf_list))
} else if (inherits(vcf_list, "GRanges")) {
gr <- .get_strandedness_gr(vcf_list)
tb <- .get_strandedness_tb(gr)
tb$sample <- "MySample"
sample_names <- "MySample"
nr_samples <- 1
max_nr_mutations <- length(vcf_list)
} else {
.not_gr_or_grl(vcf_list)
}
# Turn the sample column into a factor.
# This ensures the correct order of the samples in the plot.
tb <- dplyr::mutate(tb, sample = factor(sample, levels = unique(sample)))
## set chrom order
if (!.is_na(chromosomes)) {
chromosomes <- as.character(chromosomes)
withCallingHandlers(
{
GenomeInfoDb::seqlevelsStyle(chromosomes) = "NCBI"
},
warning = function(w) {
if (grepl("found more than one best sequence renaming map compatible with seqname style",
conditionMessage(w))) {
invokeRestart("muffleWarning")
}
}
)
tb <- tb %>%
dplyr::filter(seqnames %in% chromosomes) %>%
dplyr::mutate(seqnames = factor(seqnames, levels = chromosomes))
} else{
chromosomes <- GenomeInfoDb::seqlevelsInUse(vcf_list)
if (!length(chromosomes)){
chromosomes <- GenomeInfoDb::seqlevels(vcf_list)
}
tb$seqnames <- factor(tb$seqnames, levels = chromosomes)
}
# Create limit to ensure that the entire chromosomes are plotted,
# even when mutations don't span the entire chromosome.
chroms <- levels(tb$seqnames)
nr_chroms <- length(chroms)
chrom_lengths <- GenomeInfoDb::seqlengths(vcf_list)[chroms]
chr_starts <- tibble::tibble("start_mb" = rep(1, nr_chroms),
"seqnames" = chroms)
chr_ends <- tibble::tibble("start_mb" = chrom_lengths/1000000,
'seqnames' = chroms)
chr_limits <- rbind(chr_starts, chr_ends)
# Per sample limits
tb_limits <- tibble::tibble("sample" = factor(rep(sample_names, each = 2 * nr_chroms), levels = levels(tb$sample)),
"start_mb" = rep(chr_limits$start_mb, nr_samples),
"seqnames" = factor(rep(chr_limits$seqnames, nr_samples), levels = chroms),
"y" = 0.5)
# calculate mean strand per chomosome per sample
tb_mean <- tb %>%
dplyr::group_by(seqnames, sample) %>%
dplyr::summarize(y = mean(y), n = dplyr::n(), .groups = "drop_last") %>%
dplyr::ungroup() %>%
dplyr::right_join(tb_limits[,c("sample", "seqnames", "start_mb")],
by = c("seqnames", "sample")) %>%
dplyr::filter(n >= min_muts_mean) %>%
dplyr::mutate(sample = factor(sample, levels = levels(tb$sample)))
# Set point_sizes
point_size <- 200 / max_nr_mutations
if (per_chrom == TRUE) {
point_size <- point_size * 5
}
if (point_size > 2) {
point_size <- 2
} else if (point_size < 0.02) {
point_size <- 0.02
}
# Create plots
if (per_chrom == FALSE) {
fig <- .plot_lesion_segregation_gg(tb, tb_mean, tb_limits, point_size, sample_name)
return(fig)
} else {
tb_l <- split(tb, tb$seqnames)
tb_mean_l <- split(tb_mean, tb_mean$seqnames)
tb_limits_l <- split(tb_limits, tb_limits$seqnames)
fig_l <- mapply(.plot_lesion_segregation_gg,
tb_l, tb_mean_l, tb_limits_l,
MoreArgs = list("point_size" = point_size, "sample_name" = sample_name),
SIMPLIFY = FALSE
)
return(fig_l)
}
}
#' Subsample granges to a smaller number of mutations
#'
#' @param vcf GRanges object
#' @param subsample Double between 0 and 1. Subsamples the amount of mutations to create
#' a plot with less dots. Such a plot is easier to modify in a vector program like illustrator.
#'
#' @return GRanges object
#' @noRd
#'
.subsample_granges = function(vcf, subsample){
nr_muts_kept <- ceiling(subsample * length(vcf))
muts_kept_i <- sample.int(length(vcf), nr_muts_kept, replace = FALSE)
vcf <- vcf[muts_kept_i,]
return(vcf)
}
#' Plot the strands of variants to show lesion segregation
#'
#' This is a helper function for 'plot_lesion_segregation'.
#' It performs the actual plotting.
#'
#' @param tb A tibble with strand information of variants
#' @param tb_mean A tibble with the mean strand per chromosome
#' per sample.
#' @param tb_limits tibble describing the chromosome limits.
#' This ensures entire chromosomes are plotted,
#' instead of just the part with variants
#' @param point_size Scalar describing the point size of the plot
#' @param sample_name Name of the sample
#'
#' @return ggplot2 object
#'
#' @import ggplot2
#' @noRd
#'
.plot_lesion_segregation_gg <- function(tb, tb_mean, tb_limits, point_size, sample_name) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
y <- start_mb <- NULL
if (.is_na(sample_name)) {
my_labs <- labs(y = "Strand", x = "Coordinate (mb)")
} else {
my_labs <- labs(y = "Strand", x = "Coordinate (mb)", title = sample_name)
}
# Plot strandedness
fig <- ggplot(mapping = aes(y = y, x = start_mb, color = y)) +
geom_line(data = tb_mean, size = 1.5) +
geom_jitter(data = tb, width = 0.05, height = 0.1, size = point_size) +
facet_grid(sample ~ seqnames, scales = "free_x", space = "free_x") +
geom_blank(data = tb_limits) +
scale_y_continuous(breaks = c(0, 1), labels = c("-", "+"), limits = c(-1, 2)) +
my_labs +
theme_bw() +
theme(text = element_text(size = 16),
axis.text.x = element_blank(),
axis.ticks = element_blank(),
axis.text.y = element_text(size = 16),
panel.grid = element_blank(),
panel.grid.major.y = element_line(),
panel.border = element_blank(),
legend.position = 'none') +
scale_color_gradientn(colors = c('#446DF6', 'grey90', '#FFBC63'),limits = c(0,1))
return(fig)
}
|