File: plot_profile_heatmap.R

package info (click to toggle)
r-bioc-mutationalpatterns 3.16.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,360 kB
  • sloc: sh: 8; makefile: 2
file content (195 lines) | stat: -rw-r--r-- 5,994 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#' Plot a mutation matrix as a heatmap
#'
#' Function to plot a SNV mutation matrix as a heatmap.
#' This is especially useful when looking at a wide mutational context.
#'
#'
#' @param mut_matrix Matrix containing mutation counts.
#' @param by Optional grouping variable
#' @param max Maximum value used for plotting the relative contributions.
#'   Contributions that are higher will have the maximum colour. (Default: 0.02)
#' @param condensed More condensed plotting format. Default = F.
#' 
#' @return A ggplot object
#' @export
#' @importFrom magrittr %>%
#' @import ggplot2
#' 
#' @seealso
#' \code{\link{mut_matrix}},
#' \code{\link{plot_96_profile}},
#' \code{\link{plot_river}}
#' @examples
#'
#' ## See the 'mut_matrix()' examples for how we obtained the
#' ## mutation matrix information:
#' ## Get regular matrix
#' mut_mat <- readRDS(system.file("states/mut_mat_data.rds",
#'   package = "MutationalPatterns"
#' ))
#'
#' ## Create heatmap of profile
#' plot_profile_heatmap(mut_mat, max = 0.1)
#'
#' ## Get extended matrix
#' mut_mat_extended <- readRDS(system.file("states/mut_mat_data_extended.rds",
#'   package = "MutationalPatterns"
#' ))
#'
#' ## Create heatmap of extended profile
#' plot_profile_heatmap(mut_mat_extended)
#'
#' ## Or plot heatmap per tissue
#' tissue <- c(
#'   "colon", "colon", "colon",
#'   "intestine", "intestine", "intestine",
#'   "liver", "liver", "liver"
#' )
#'
#' plot_profile_heatmap(mut_mat_extended, by = tissue)
#'
#' ## Or plot the heatmap per sample.
#' plot_profile_heatmap(mut_mat_extended,
#'   by = colnames(mut_mat_extended),
#'   max = 0.05
#' )
#' 
#' 
#' ## Create a condensed heatmap of extended profile
#' plot_profile_heatmap(mut_mat_extended, condensed = TRUE)

plot_profile_heatmap <- function(mut_matrix, 
                                 by = NA, 
                                 max = 0.02,
                                 condensed = FALSE) {

  # These variables use non standard evaluation.
  # To avoid R CMD check complaints we initialize them to NULL.
  fullcontext <- l_context <- r_context <- muttype <- NULL
  nrmuts <- rel_nrmuts <- NULL

  # check arguments
  if (!inherits(mut_matrix, "matrix")) {
    stop("mut_matrix must be a matrix", call. = FALSE)
  }
  # matrix should have row and colnames
  if (length(colnames(mut_matrix)) == 0) {
    stop("mut_matrix is missing colnames", call. = FALSE)
  }
  if (length(rownames(mut_matrix)) == 0) {
    stop("mut_matrix is missing rownames", call. = FALSE)
  }


  # Transform the data into long format and get left/right context seperately.
  tb <- mut_matrix %>%
    as.data.frame() %>%
    tibble::rownames_to_column("fullcontext") %>%
    tidyr::pivot_longer(-fullcontext, names_to = "sample", values_to = "nrmuts") %>%
    tidyr::separate("fullcontext", # Separate context into left context, mut and right context
      into = c("l_context", "muttype", "r_context"),
      sep = "\\[|\\]"
    ) %>%
    dplyr::mutate(
      mut = factor(muttype, levels = unique(muttype)),
      r_context = factor(r_context, levels = unique(r_context)),
      l_context = factor(l_context, levels = Biostrings::reverse(unique(l_context)))
    )

  # Make data relative
  tb <- tb %>%
    dplyr::group_by(sample) %>%
    dplyr::mutate(rel_nrmuts = nrmuts / sum(nrmuts)) %>% 
    dplyr::ungroup()

  # Add sample grouping
  if (.is_na(by)) {
    by <- "all"
  }
  tb_by <- tibble::tibble(
    "sample" = unique(tb$sample),
    "by" = by
  )
  tb <- tb %>%
    dplyr::left_join(tb_by, by = "sample")

  # Combine samples based on grouping
  tb <- tb %>%
    dplyr::mutate(by = factor(by, levels = unique(by))) %>% 
    dplyr::group_by(by, l_context, muttype, r_context) %>%
    dplyr::summarise(
      nrmuts = sum(nrmuts),
      rel_nrmuts = mean(rel_nrmuts),
      total_indv = dplyr::n(),
      .groups = "drop_last"
    ) %>%
    dplyr::ungroup()

  # If value is higher than y_max, change it to ymax. (Prevents plotting issues)
  tb <- tb %>%
    dplyr::mutate(rel_nrmuts = ifelse(rel_nrmuts > max, max, rel_nrmuts))


  # Count number muts per sample_group
  tot_muts_samplegroups_tb <- tb %>%
    dplyr::group_by(by) %>%
    dplyr::summarise(nrmuts = sum(nrmuts), .groups = "drop_last")

  # Create y facet labels
  facet_labs_y <- stringr::str_c(tot_muts_samplegroups_tb$by, " (n = ", tot_muts_samplegroups_tb$nrmuts, ")")
  names(facet_labs_y) <- tot_muts_samplegroups_tb$by

  # Count number muts per mut
  tot_muts_muttype_tb <- tb %>%
    dplyr::group_by(muttype) %>%
    dplyr::summarise(nrmuts = sum(nrmuts), .groups = "drop_last")

  # Create x facet labels
  facet_labs_x <- stringr::str_c(tot_muts_muttype_tb$muttype, " (n = ", tot_muts_muttype_tb$nrmuts, ")")
  names(facet_labs_x) <- tot_muts_muttype_tb$muttype

  # Set plotting parameters
  context_size <- stringr::str_length(tb$l_context[1])
  if (context_size == 1) {
    axis_size <- 10
  } else if (context_size == 2) {
    axis_size <- 8
  } else if (context_size == 3) {
    axis_size <- 4
  } else {
    axis_size <- 3
  }

  # Change plotting parameters based on whether plot should be condensed.
  if (condensed == TRUE) {
    spacing <- 0
  } else {
    spacing <- 0.5
  }
  
  
  
  # Create plot
  fig <- ggplot(tb, aes(x = r_context, 
                        y = l_context, 
                        fill = rel_nrmuts)) +
    geom_raster() +
    scale_fill_distiller(
      palette = "YlGnBu",
      direction = 1,
      name = "Relative contribution",
      limits = c(0, max)
    ) +
    facet_grid(by ~ muttype, labeller = labeller(by = facet_labs_y, muttype = facet_labs_x)) +
    labs(x = "3' context", y = "5' context") +
    theme_bw() +
    theme(
      axis.text.y = element_text(size = axis_size),
      axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5, size = axis_size),
      panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
      panel.spacing.x = unit(spacing, "lines"),
      panel.spacing.y = unit(spacing, "lines")
    )

  return(fig)
}