File: plot_regional_similarity.R

package info (click to toggle)
r-bioc-mutationalpatterns 3.16.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,360 kB
  • sloc: sh: 8; makefile: 2
file content (287 lines) | stat: -rw-r--r-- 11,512 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#' Plot regional similarity
#' 
#' Plot the cosine similarity of the mutation profiles of small genomic windows
#' with the rest of the genome.
#' 
#' @details
#' Each dot shows the cosine similarity between the mutation profiles of a
#' single window and the rest of the genome. A region with a different mutation
#' profile will have a lower cosine similarity. The dots are colored based on
#' the sizes in mega bases of the windows. This size is the distance between the
#' first and last mutations in a window. The locations of the mutations can be
#' plotted on the bottom of the figure. The cosine similarity can be plotted
#' both with and without oligonucleotide frequency correction. This can be done
#' for all chromosomes at once or separate plots can be made per chromosome.
#'
#' @param region_cossim A region_cossim object.
#' @param per_chrom Boolean. Determines whether to create a separate plot per chromosome. (Default: FALSE)
#' @param oligo_correction Boolean describing whether the oligonucleotide
#'   frequency corrected cosine similarities should be plotted. If no correction
#'   has been applied then the regular cosine similarities will be plotted.
#'   (Default: TRUE)
#' @param max_cossim Maximum cosine similarity for a window to be considered
#'   an outlier. Any window with a lower cosine similarity is given a different
#'   color. (Default: NA)
#' @param title Optional plot title. (Default: NA). When the default option is
#'   used, the number of mutations per window and the step size are shown.
#' @param plot_rug Add a bottom rug to the plot, depicting the location of
#'   the mutations. (Default: FALSE)
#' @param x_axis_breaks Vector of custom x-axis breaks. (Default: NA)
#'
#' @return ggplot2 object
#' 
#' @export
#' @seealso
#' \code{\link{determine_regional_similarity}}
#' @family regional_similarity
#' 
#' @importFrom magrittr %>%
#' 
#' @examples
#' 
#' ## See the 'determine_regional_similarity()' example for how we obtained the
#' ## following data:
#' regional_sims <- readRDS(system.file("states/regional_sims.rds",
#'   package = "MutationalPatterns"
#' ))
#' 
#' ## Plot the regional similarity
#' plot_regional_similarity(regional_sims)
#' 
#' ## Plot outlier samples with a different color.
#' ## The value of 0.5 that is used here is arbitrarily chosen
#' ## and should in practice be based on the data.
#' plot_regional_similarity(regional_sims, max_cossim = 0.5)
#' 
#' ## Plot samples per chromosome
#' fig_l = plot_regional_similarity(regional_sims, per_chrom = TRUE)
#' 
#' ## Plot without a title
#' plot_regional_similarity(regional_sims, title = "")
#' 
#' ## Add a rug to the plot, that shows the location of the mutations.
#' plot_regional_similarity(regional_sims, plot_rug = FALSE)
#' 
#' ## Use custom x axis breaks
#' plot_regional_similarity(regional_sims, x_axis_breaks = c(50, 150))
#' 
plot_regional_similarity <- function(region_cossim, 
                                    per_chrom = FALSE, 
                                    oligo_correction = TRUE, 
                                    max_cossim = NA,
                                    title = NA,
                                    plot_rug = FALSE,
                                    x_axis_breaks = NA){
    
    # These variables use non standard evaluation.
    # To avoid R CMD check complaints we initialize them to NULL.
    chr <- sims <- metadata <- NULL
    
    #Retrieve chromosome lengths.
    max_chr_length <- max(region_cossim@chr_lengths / 1000000)
    
    #Set x-axis breaks
    if (.is_na(x_axis_breaks)){
        x_axis_breaks <- .get_x_axis_breaks(region_cossim, per_chrom)
    }
    
    #Get pos_tb and sim_tb.
    pos_tb <- region_cossim@pos_tb
    sim_tb <- get_sim_tb(region_cossim)
    
    # Set oligo_correction to FALSE if it has not been performed
    if (!("corrected_cossim" %in% colnames(sim_tb))){
        oligo_correction = FALSE
    }
    
    #Remove chr from the chrom names, so they are shorter
    levels(pos_tb$chr) <- gsub("chr|chromosome_|chromosome|group|group_|chrom", "", levels(pos_tb$chr))
    levels(sim_tb$chr) <- gsub("chr|chromosome_|chromosome|group|group_|chrom", "", levels(sim_tb$chr))
    sim_tb <- sim_tb %>% 
        dplyr::mutate(chr = factor(chr, levels = levels(pos_tb$chr)))
    

    #Set point size
    windows_per_bp <- nrow(sim_tb) / sum(region_cossim@chr_lengths)
    point_size <- 0.0000008 / windows_per_bp
    
    if (per_chrom == TRUE){
        point_size <- point_size * 5
    }
    
    if (point_size > 1.5){
        point_size <- 1.5
    } else if (point_size < 0.03){
        point_size <- 0.03
    }
    
    chrom_ends <- .calc_chrom_ends(region_cossim)
    
    #Create plots
    if (per_chrom == FALSE){
        fig <- .plot_regional_similarity_gg(sim_tb, pos_tb, chrom_ends, x_axis_breaks, point_size, region_cossim@window_size,
                                    region_cossim@stepsize, oligo_correction, max_cossim = max_cossim, title, plot_rug)
        return(fig)   
    } else{
        sim_tb_l <- split(sim_tb, sim_tb$chr)
        pos_tb_l <- split(pos_tb, pos_tb$chr)
        chrom_ends_l <- split(chrom_ends, chrom_ends$chr)
        fig_l <- purrr::pmap(list(sim_tb_l, pos_tb_l, chrom_ends_l),
                             .plot_regional_similarity_gg,
                     x_axis_breaks = x_axis_breaks, point_size = point_size, window_size = region_cossim@window_size,
                     stepsize = region_cossim@stepsize, oligo_correction = oligo_correction, max_cossim = max_cossim,
                     title = title, plot_rug = plot_rug)
        return(fig_l)
    }
}

#' Determine x axis breaks
#'
#' @param region_cossim A region_cossim object.
#' @param per_chrom Boolean. Determines whether to create a separate plot per chromosome.
#'
#' @return A vector with x-axis breaks.
#' @noRd
#'
.get_x_axis_breaks <- function(region_cossim, per_chrom){
    max_chr_length <- max(region_cossim@chr_lengths / 1000000)
    
    #Set x-axis breaks
    if (per_chrom == TRUE){
        x_axis_break_length <- 10
    } else{
        x_axis_break_length <- 50
    }
    
    if (max_chr_length < x_axis_break_length){
        x_axis_breaks <- x_axis_break_length
    } else{
        x_axis_breaks <- seq(x_axis_break_length, max_chr_length, by = x_axis_break_length)
    }
    return(x_axis_breaks)
}


#' Determine chromosome start and end positions.
#'
#' @param region_cossim A region_cossim object.
#'
#' @return A tibble containing the start and end position of chromosomes.
#' @noRd
#' @importFrom magrittr %>%
#'
.calc_chrom_ends <- function(region_cossim){
    
    # These variables use non standard evaluation.
    # To avoid R CMD check complaints we initialize them to NULL.
    chr <- NULL
    
    
    chr_pos_tb <- tibble::tibble("chr" = names(region_cossim@chr_lengths), "start" = 1, "end" = as.double(region_cossim@chr_lengths)) %>% 
        dplyr::mutate(chr = gsub("chr|chromosome_|chromosome|group|group_|chrom", "", chr), chr = factor(chr, levels = chr)) %>%
        tidyr::gather(key = "side", value = "pos", -chr) %>% 
        dplyr::mutate(pos_mb = pos / 1000000)
    return(chr_pos_tb)
}

#' Create a single regional similarity plot
#'
#' @param sim_tb A tibble containing the calculated similarities of the windows.
#' @param pos_tb A tibble containing the mutation positions.
#' @param chrom_ends A tibble containing the start and end position of chromosomes.
#' @param x_axis_breaks A vector with x-axis breaks.
#' @param point_size The point size used for plotting windows
#' @param window_size The number of mutations in a window.
#' @param stepsize The number of mutations that a window slides in each step.
#' @param oligo_correction Boolean describing whether the oligonucleotide
#'   frequency corrected cosine similarities should be plotted. If no correction
#'   has been applied then the regular cosine similarities will be plotted.
#' @param max_cossim Maximum cosine similarity for a window to be considered
#'   an outlier. Any window with a lower cosine similarity is given a different
#'   color.
#' @param title Optional plot title. (Default: NA). When the default option is
#'   used, the number of mutations per window and the step size are shown.
#' @param plot_rug Add a bottom rug to the plot, depicting the location of
#'   the mutations. (Default: FALSE)
#'
#' @return ggplot2 object
#' @noRd
#' @import ggplot2
#' @importFrom magrittr %>%
#'
.plot_regional_similarity_gg <- function(sim_tb, 
                                      pos_tb, 
                                      chrom_ends, 
                                      x_axis_breaks, 
                                      point_size, 
                                      window_size, 
                                      stepsize, 
                                      oligo_correction, 
                                      max_cossim,
                                      title,
                                      plot_rug){
    
    # These variables use non standard evaluation.
    # To avoid R CMD check complaints we initialize them to NULL.
    window_sizes_mb <- window_pos_mb <- pos_mb <- colour <- NULL
    
    
    # Create title
    if (is.na(title)){
        title <- paste0(" Mutations per window: ", window_size, "; Step size: ", stepsize)
    }
    
    #Set max y axis and other details
    if (oligo_correction){
        y_max_databased <- 1.1 * max(sim_tb$corrected_cossim)
        y_max <- max(y_max_databased, 1)
        y_lab <- "Corrected cosine similarity"
        y_min <- 0
        sim_type <- "corrected_cossim"
    } else{
        y_max <- 1
        y_lab <- "Cosine similarity"
        y_min <- 0
        sim_type <- "cossim"
    }
    
    sim_type <- sym(sim_type)
    
    if (!.is_na(max_cossim)){
        sim_tb <- sim_tb %>% dplyr::mutate(colour = !!sim_type <= max_cossim)
        colour_lab <- "Outlier"
        colour_scale <- scale_color_manual(values = c("TRUE" = "red", "FALSE" = "blue"))
    } else{
        colour_lab <- "Window size (mb)"
        
        # Limits for colours
        sim_tb <- dplyr::mutate(sim_tb, colour = ifelse(window_sizes_mb > 4, 4, window_sizes_mb)) 
        
        # Use the blues gradient from RColorBrewer. 
        # The lightest 3 colors are removed, because they were hard to see.
        colour_scale <- scale_color_gradientn(colours = rev(RColorBrewer::brewer.pal(9, "Blues")[4:9]), 
                                              limits = c(0,4), 
                                              labels = c(0, 1, 2, 3, ">4"), 
                                              breaks = c(0, 1, 2,3, 4)) 
    }
    
    # Create main figure
    fig <- ggplot(sim_tb, aes(x = window_pos_mb, y = !!sim_type)) +
        geom_blank(data = chrom_ends, aes(x = pos_mb, y = 0)) +
        geom_point(aes(colour = colour), size = point_size) +
        facet_grid(. ~ chr, scales = "free_x", space = "free_x") +
        labs(x = "Coordinate (mb)", y = y_lab, colour = colour_lab, title = title) +
        colour_scale +
        coord_cartesian(ylim = c(y_min, y_max), expand = FALSE) +
        theme_bw() +
        scale_x_continuous(breaks = x_axis_breaks) +
        theme(text = element_text(size = 16), axis.text.x = element_text(size = 12), legend.position = "bottom")
    
    # Optionally add rug containing mutation positions.
    if (plot_rug){
        fig <- fig +
            geom_rug(data = pos_tb, aes(x = pos_mb, y = NULL), sides = "b", size = 0.005)
    }
    
    return(fig)
}