File: plot_river.R

package info (click to toggle)
r-bioc-mutationalpatterns 3.16.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,360 kB
  • sloc: sh: 8; makefile: 2
file content (178 lines) | stat: -rw-r--r-- 5,631 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#' Plot a riverplot
#' 
#' Function to plot a SNV mutation matrix as a riverplot.
#' This is especially useful when looking at a wide
#' mutational context
#'
#' @param mut_matrix Matrix containing mutation counts.
#' @param condensed More condensed plotting format. Default = F.
#' 
#' @return A ggplot object
#' 
#' @export
#' @import ggplot2
#' @import ggalluvial
#' 
#' @seealso
#' \code{\link{mut_matrix}},
#' \code{\link{plot_96_profile}},
#' \code{\link{plot_profile_heatmap}}
#' 
#' @examples
#' 
#' ## See the 'mut_matrix()' examples for how we obtained the
#' ## mutation matrix information:
#' ## Get regular matrix
#' mut_mat <- readRDS(system.file("states/mut_mat_data.rds",
#'   package = "MutationalPatterns"
#' ))
#'
#' ## Create heatmap of profile
#' plot_river(mut_mat[,c(1,4)])
#'
#' ## Get extended matrix
#' mut_mat_extended <- readRDS(system.file("states/mut_mat_data_extended.rds",
#'   package = "MutationalPatterns"
#' ))
#'
#' ## Create heatmap of extended profile
#' plot_river(mut_mat_extended[,c(1,4)])
#' 
#' ## Create condensed version of riverplot
#' plot_river(mut_mat_extended[,c(1,4)], condensed = TRUE)
#' 
plot_river = function(mut_matrix, condensed = FALSE){
    
    context_m <- .river_create_context_matrix(mut_matrix)
    lodes_tb <- .river_create_lodes(mut_matrix, context_m)
    fig <- .river_plot_river(lodes_tb, mut_matrix, condensed)
    
    return(fig)
}

#' Split the contexts of a mutation matrix
#'
#' Function to split the contexts of a mutation matrix
#' in multiple columns.
#' 
#' @param mut_matrix Matrix containing mutation counts.
#'
#' @return Matrix containing the contexts of a mutation matrix.
#' @noRd
#' @importFrom magrittr %>%
#' 
.river_create_context_matrix = function(mut_matrix){
    
    # Split left and right context from mutations
    context_m <- mut_matrix %>% 
        rownames() %>% 
        stringr::str_split("\\[|\\]", simplify = TRUE)
    
    # Split contexts into single bases
    left_m <- stringr::str_split(context_m[,1], "", simplify = TRUE)
    right_m <- stringr::str_split(context_m[,3], "", simplify = TRUE)
    
    # Combine all
    context_m <- cbind(left_m, context_m[,2], right_m)
    
    # Set column names
    mut_positions <- c((-1*rev(seq_len(ncol(left_m)))), 0, seq_len(ncol(right_m)))
    colnames(context_m) <- paste0("pos_", mut_positions)
    
    return(context_m)
}


#' Create a long format lodes tibble.
#'
#' @param mut_matrix Matrix containing mutation counts.
#' @param context_m Matrix containing the contexts of a mutation matrix.
#'
#' @return A tibble in lodes format containing the mutation contexts.
#' @noRd
#'
#' @importFrom magrittr %>%
#' 
.river_create_lodes = function(mut_matrix, context_m){
    
    # These variables use non standard evaluation.
    # To avoid R CMD check complaints we initialize them to NULL.
    pos <- type <- sample_name <- rowid <- nrmuts <- NULL
    
    mut_df <- as.data.frame(mut_matrix)
    context_df <- as.data.frame(context_m)
    
    # Transform data into long (lodes) format.
    lodes_tb <- cbind(mut_df, context_df) %>% 
        tibble::rowid_to_column() %>% 
        tidyr::pivot_longer(cols = dplyr::contains("pos_"), names_to = "pos", values_to = "type") %>% 
        tidyr::pivot_longer(cols = c(-pos, -type, -rowid), 
                            names_to = "sample_name", 
                            values_to = "nrmuts") %>% 
        dplyr::mutate(pos = stringr::str_remove(pos, "pos_"),
            pos = factor(pos, levels = unique(pos)),
            type = factor(type, levels = unique(type)),
            sample_name = factor(sample_name, levels = unique(sample_name)))
    return(lodes_tb)
}

#' Plot a riverplot with a lodes tibble as input
#'
#' @param lodes_tb A tibble in lodes format containing the mutation contexts.
#' @param condensed More condensed plotting format.
#'
#' @return A ggplot object
#' @noRd
#'
#' @import ggplot2
#' @import ggalluvial
#' 
.river_plot_river = function(lodes_tb, mut_matrix, condensed){
    
    # These variables use non standard evaluation.
    # To avoid R CMD check complaints we initialize them to NULL.
    rowid <- nrmuts <- NULL
    
    
    # Set colours
     colours_v <- c("#EF2D56", "#446DF6","#6FAB94", "#FFBC63", 
                  "#2EBAED", "#000000", "#DE1C14", "#D4D2D2", 
                  "#ADCC54", "#F0D0CE")
    types <- c("T", "C", "A", "G", "C>A", "C>G", "C>T", "T>A", "T>C", "T>G")
    typesin <- types %in% unique(lodes_tb$type)
    used_colours <- colours_v[typesin]
    
    # Change plotting parameters based on whether plot should be condensed.
    if (condensed == TRUE) {
        spacing <- 0
    } else {
        spacing <- 0.5
    }
    
    # Create facet texts
    nr_muts <- colSums(mut_matrix)
    facet_labs_y <- stringr::str_c(colnames(mut_matrix), " (n = ", nr_muts, ")")
    names(facet_labs_y) <- colnames(mut_matrix)
    
    #Add stratum stat.
    StatStratum <- ggalluvial::StatStratum
    
    # Create plot 
    fig <- ggplot(lodes_tb, aes(x = pos, 
                  stratum = type, 
                  y = nrmuts, 
                  alluvium = rowid, 
                  fill = type, 
                  label = type)) + 
        geom_stratum() + 
        geom_flow() + 
        geom_text(stat = StatStratum, size = 3, colour = "white") +
        facet_grid(sample_name ~ ., scales = "free_y",
                   labeller = labeller(sample_name = facet_labs_y)) +
        scale_fill_manual(values = used_colours) +
        labs(x = "Position", y = "Nr mutations") +
        theme_bw() +
        theme(panel.spacing.y = unit(spacing, "lines"))
    
    return(fig)
}