1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#' Plot point mutation spectrum
#'
#' @param type_occurrences Type occurrences matrix
#' @param CT Distinction between C>T at CpG and C>T at other
#' sites, default = FALSE
#' @param by Optional grouping variable
#' @param indv_points Whether to plot the individual samples
#' as points, default = FALSE
#' @param error_bars The type of error bars to plot.
#' * '95%_CI' for 95% Confidence intervals (default);
#' * 'stdev' for standard deviations;
#' * 'SEM' for the standard error of the mean (NOT recommended);
#' * 'none' Do not plot any error bars;
#' @param colors Optional color vector with 7 values
#' @param legend Plot legend, default = TRUE
#' @param condensed More condensed plotting format. Default = F.
#' @return Spectrum plot
#'
#' @import ggplot2
#' @importFrom magrittr %>%
#'
#' @examples
#' ## See the 'read_vcfs_as_granges()' example for how we obtained the
#' ## following data:
#' vcfs <- readRDS(system.file("states/read_vcfs_as_granges_output.rds",
#' package = "MutationalPatterns"
#' ))
#'
#'
#' ## Load a reference genome.
#' ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
#' library(ref_genome, character.only = TRUE)
#'
#' ## Get the type occurrences for all VCF objects.
#' type_occurrences <- mut_type_occurrences(vcfs, ref_genome)
#'
#' ## Plot the point mutation spectrum over all samples
#' plot_spectrum(type_occurrences)
#'
#' ## Or with distinction of C>T at CpG sites
#' plot_spectrum(type_occurrences, CT = TRUE)
#'
#' ## You can also include individual sample points.
#' plot_spectrum(type_occurrences, CT = TRUE, indv_points = TRUE)
#'
#' ## You can also change the type of error bars
#' plot_spectrum(type_occurrences, error_bars = "stdev")
#'
#' ## Or plot spectrum per tissue
#' tissue <- c(
#' "colon", "colon", "colon",
#' "intestine", "intestine", "intestine",
#' "liver", "liver", "liver"
#' )
#'
#' plot_spectrum(type_occurrences, by = tissue, CT = TRUE)
#'
#' ## Or plot the spectrum per sample. Error bars are set to 'none', because they can't be plotted.
#' plot_spectrum(type_occurrences, by = names(vcfs), CT = TRUE, error_bars = "none")
#'
#' ## Plot it in a more condensed manner,
#' ## which is is ideal for publications.
#' plot_spectrum(type_occurrences,
#' by = names(vcfs),
#' CT = TRUE,
#' error_bars = "none",
#' condensed = TRUE)
#'
#' ## You can also set custom colors.
#' my_colors <- c(
#' "pink", "orange", "blue", "lightblue",
#' "green", "red", "purple"
#' )
#'
#' ## And use them in a plot.
#' plot_spectrum(type_occurrences,
#' CT = TRUE,
#' legend = TRUE,
#' colors = my_colors
#' )
#' @seealso
#' \code{\link{read_vcfs_as_granges}},
#' \code{\link{mut_type_occurrences}}
#'
#' @export
plot_spectrum <- function(type_occurrences,
CT = FALSE,
by = NA,
indv_points = FALSE,
error_bars = c("95%_CI", "stdev", "SEM", "none"),
colors = NA,
legend = TRUE,
condensed = FALSE) {
# These variables use non standard evaluation.
# To avoid R CMD check complaints we initialize them to NULL.
value <- nmuts <- sub_type <- variable <- error_pos <- stdev <- total_mutations <- NULL
x <- total_individuals <- sem <- error_95 <- NULL
# Match argument
error_bars <- match.arg(error_bars)
# If colors parameter not provided, set to default colors
if (.is_na(colors)) {
colors <- COLORS7
}
# Check color vector length
if (length(colors) != 7) {
stop("Colors parameter: supply color vector with length 7")
}
# Distinction between C>T at CpG or not
if (CT == FALSE) {
type_occurrences <- type_occurrences[, seq_len(6)]
} else {
type_occurrences <- type_occurrences[, c(1, 2, 8, 7, 4, 5, 6)]
}
# If grouping variable not provided, set to "all"
if (.is_na(by)) {
by <- "all"
}
# Reshape the type_occurences for the plotting
tb_per_sample <- type_occurrences %>%
tibble::rownames_to_column("sample") %>%
dplyr::mutate(by = by) %>% # Add user defined grouping
tidyr::pivot_longer(c(-sample, -by), names_to = "variable", values_to = "nmuts") %>% # Make long format
dplyr::group_by(sample) %>%
dplyr::mutate(value = nmuts / sum(nmuts)) %>% # Calculate relative values
dplyr::ungroup() %>%
dplyr::mutate(
sub_type = stringr::str_remove(variable, " .*"),
variable = factor(variable, levels = unique(variable))
)
# Summarise per group and mutation type
tb <- tb_per_sample %>%
dplyr::mutate(by = factor(by, levels = unique(by))) %>%
dplyr::group_by(by, variable) %>%
dplyr::summarise(
sub_type = sub_type[[1]], mean = mean(value), stdev = stats::sd(value),
total_individuals = sum(value), total_mutations = sum(nmuts)
) %>%
dplyr::mutate(total_individuals = sum(total_individuals), total_mutations = sum(total_mutations)) %>%
dplyr::mutate( # Calc 95% CI and sem
sem = stdev / sqrt(total_individuals),
error_95 = ifelse(total_individuals > 1, qt(0.975, df = total_individuals - 1) * sem, NA)
) %>%
dplyr::ungroup() %>%
dplyr::mutate( # Make pretty and add subtypes
total_mutations = prettyNum(total_mutations, big.mark = ","),
total_mutations = paste("No. mutations = ", total_mutations),
error_pos = mean
)
# Change some settings based on whether CT should be plotted separately.
if (CT == FALSE) {
# Define colors for plotting
colors <- colors[c(1, 2, 3, 5, 6, 7)]
} # C>T stacked bar (distinction between CpG sites and other)
else {
# Adjust positioning of error bars for stacked bars
# mean of C>T at CpG should be plus the mean of C>T at other
CpG <- which(tb$variable == "C>T at CpG")
other <- which(tb$variable == "C>T other")
tb$error_pos[CpG] <- tb$error_pos[other] + tb$error_pos[CpG]
# Value of the individual sample points also needs to be adjusted.
CpG <- which(tb_per_sample$variable == "C>T at CpG")
other <- which(tb_per_sample$variable == "C>T other")
tb_per_sample$value[CpG] <- tb_per_sample$value[other] + tb_per_sample$value[CpG]
}
# Change plotting parameters based on whether plot should be condensed.
if (condensed == TRUE) {
width <- 1
spacing <- 0
} else {
width <- 0.9
spacing <- 0.5
}
# Make barplot
plot <- ggplot(data = tb, aes(
x = sub_type,
y = mean,
fill = variable,
group = sub_type,
width = width
)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = colors, name = "Point mutation type") +
theme_bw() +
xlab("") +
ylab("Relative contribution") +
theme(
axis.ticks = element_blank(),
axis.text.x = element_blank(),
panel.grid.major.x = element_blank(),
panel.spacing.x = unit(spacing, "lines")
)
# Add individual points
if (indv_points == TRUE) {
# Add total_mutations column, which is necessary for faceting later
tb_per_sample <- dplyr::left_join(tb_per_sample,
tb[, c("by", "variable", "total_mutations")],
by = c("by", "variable")
)
plot <- plot +
geom_jitter(
data = tb_per_sample, aes(y = value),
height = 0, width = 0.3, shape = 21, colour = "grey23"
)
}
# Add error bars
if (sum(is.na(tb$stdev)) > 0 & error_bars != "none") {
warning("No error bars can be plotted, because there is only one sample per mutation spectrum.
Use the argument: `error_bars = 'none'`, if you want to avoid this warning.",
call. = FALSE
)
}
else {
if (error_bars == "stdev") {
plot <- plot + geom_errorbar(aes(
ymin = error_pos - stdev,
ymax = error_pos + stdev
), width = 0.2)
} else if (error_bars == "95%_CI") {
plot <- plot + geom_errorbar(aes(
ymin = error_pos - error_95,
ymax = error_pos + error_95
), width = 0.2)
} else if (error_bars == "SEM") {
plot <- plot + geom_errorbar(aes(
ymin = error_pos - sem,
ymax = error_pos + sem
), width = 0.2)
}
}
# Perform facetting
if (length(by) == 1) {
plot <- plot + facet_wrap(~total_mutations)
} else {
plot <- plot + facet_wrap(by ~ total_mutations)
}
# Remove legend if required
if (legend == FALSE) {
plot <- plot + guides(fill = "none")
}
return(plot)
}
|