1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#' Read VCF files into a GRangesList
#'
#' This function reads Variant Call Format (VCF) files into a GRanges object
#' and combines them in a GRangesList. In addition to loading the files, this
#' function applies the same seqlevel style to the GRanges objects as the
#' reference genome passed in the 'genome' parameter.
#' By default only reads in snv variants.
#'
#' @param vcf_files Character vector of VCF file names
#' @param sample_names Character vector of sample names
#' @param genome BSgenome reference genome object
#' @param group Selector for a seqlevel group. All seqlevels outside
#' of this group will be removed. Possible values:
#' * 'all' for all chromosomes;
#' * 'auto' for autosomal chromosomes;
#' * 'sex' for sex chromosomes;
#' * 'auto+sex' for autosomal + sex chromosomes (default);
#' * 'circular' for circular chromosomes;
#' * 'none' for no filtering, which results in keeping all
#' seqlevels from the VCF file.
#' @param type The mutation type that will be loaded. All other variants will be filtered out.
#' Possible values:
#' * 'snv' (default)
#' * 'indel'
#' * 'dbs'
#' * 'mbs'
#' * 'all'
#' When you use 'all', no filtering or merging of variants is performed.
#' @param change_seqnames Boolean. Whether to change the seqlevelsStyle of the
#' vcf to that of the BSgenome object. (default = TRUE)
#' @param predefined_dbs_mbs Boolean. Whether DBS and MBS variants have been
#' predefined in your vcf. This function by default assumes that DBS and MBS
#' variants are present in the vcf as SNVs, which are positioned next to each
#' other. If your DBS/MBS variants are called separately you should set this
#' argument to TRUE. (default = FALSE)
#' @param remove_duplicate_variants Boolean. Whether duplicate variants are
#' removed. This is based on genomic coordinates and does not take the
#' alternative bases into account. It is generally recommended to keep this
#' on. Turning this off can result in warnings in plot_rainfall. When a
#' duplicate SNV is identified as part of a DBS, only a single DBS, instead of
#' a duplicate DBS will be formed. (default = TRUE)
#'
#' @return A GRangesList containing the GRanges obtained from 'vcf_files'
#'
#' @importFrom magrittr %>%
#'
#' @examples
#' ## The example data set consists of three colon samples, three intestine
#' ## samples and three liver samples. So, to map each file to its appropriate
#' ## sample name, we create a vector containing the sample names:
#' sample_names <- c(
#' "colon1", "colon2", "colon3",
#' "intestine1", "intestine2", "intestine3",
#' "liver1", "liver2", "liver3"
#' )
#'
#' ## We assemble a list of files we want to load. These files match the
#' ## sample names defined above.
#' vcf_files <- list.files(system.file("extdata",
#' package = "MutationalPatterns"
#' ),
#' pattern = "sample.vcf", full.names = TRUE
#' )
#'
#' ## Get a reference genome BSgenome object.
#' ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
#' library("BSgenome")
#' library(ref_genome, character.only = TRUE)
#'
#' ## This function loads the files as GRanges objects.
#' ## For backwards compatability reasons it only loads SNVs by default
#' vcfs <- read_vcfs_as_granges(vcf_files, sample_names, ref_genome)
#'
#' ## To load all variant types use:
#' vcfs <- read_vcfs_as_granges(vcf_files, sample_names, ref_genome, type = "all")
#'
#' ## Loading only indels can be done like this.
#'
#' ## Select data containing indels.
#' vcf_fnames <- list.files(system.file("extdata", package = "MutationalPatterns"),
#' pattern = "blood.*vcf", full.names = TRUE
#' )
#' sample_names <- c("AC", "ACC55", "BCH")
#'
#' ## Read data and select only the indels.
#' ## Other mutation types can be read in the same way.
#' read_vcfs_as_granges(vcf_fnames, sample_names, ref_genome, type = "indel")
#' @export
read_vcfs_as_granges <- function(vcf_files,
sample_names,
genome,
group = c("auto+sex", "auto", "sex", "circular", "all", "none"),
type = c("snv", "indel", "dbs", "mbs", "all"),
change_seqnames = TRUE,
predefined_dbs_mbs = FALSE,
remove_duplicate_variants = TRUE) {
# Match arguments
type <- match.arg(type)
group <- match.arg(group)
# Check sample names
if (length(vcf_files) != length(sample_names)) {
stop("Please provide the same number of sample names as VCF files", call. = FALSE)
}
# Get the reference genome
tryCatch(
error = function(cnd) {
stop("Please provide the name of a BSgenome object.", call. = FALSE)
},
{
genome <- BSgenome::getBSgenome(genome)
}
)
# Read vcfs
grl <- purrr::map(vcf_files, .read_single_vcf_as_grange, genome, group, change_seqnames, remove_duplicate_variants) %>%
GenomicRanges::GRangesList()
# Filter for mutation type
if (type != "all") {
grl <- get_mut_type(grl, type, predefined_dbs_mbs)
}
# Set the provided names for the samples.
names(grl) <- sample_names
return(grl)
}
#' Read a single VCF file into a GRanges object
#'
#' This function reads a Variant Call Format (VCF) file into a GRanges object
#' In addition to loading the files, this
#' function applies the same seqlevel style to the GRanges objects as the
#' reference genome passed in the 'genome' parameter.
#'
#' @param vcf_file A VCF file name
#' @param genome BSgenome object
#' @param group Selector for a seqlevel group. All seqlevels outside
#' of this group will be removed. Possible values:
#' * 'all' for all chromosomes;
#' * 'auto' for autosomal chromosomes;
#' * 'sex' for sex chromosomes;
#' * 'auto+sex' for autosomal + sex chromosomes (default);
#' * 'circular' for circular chromosomes;
#' * 'none' for no filtering, which results in keeping all
#' seqlevels from the VCF file.
#' @param change_seqnames Boolean. Whether to change the seqlevelStyle of the
#' vcf to that of the BSgenome object.
#' @param remove_duplicate_variants Boolean. Whether duplicate variants are
#' removed. This is based on genomic coordinates and does not take the
#' alternative bases into account. It is generally recommended to keep this
#' on. Turning this off can result in warnings in plot_rainfall. When a
#' duplicate SNV is identified as part of a DBS, only a single DBS, instead of
#' a duplicate DBS will be formed. (default = TRUE)
#' @return A GRanges object
#' @importFrom magrittr %>%
#' @noRd
#'
.read_single_vcf_as_grange <- function(vcf_file, genome, group, change_seqnames, remove_duplicate_variants) {
# Use VariantAnnotation's readVcf, but only store the
# GRanges information in memory. This speeds up the
# loading significantly.
# Muffle the warning about duplicate keys.
withCallingHandlers(
{
gr <- GenomicRanges::granges(VariantAnnotation::readVcf(vcf_file))
},
warning = function(w) {
if (grepl("duplicate keys in header will be forced to unique rownames", conditionMessage(w))) {
invokeRestart("muffleWarning")
}
}
)
# Throw a warning when a file is empty.
# Return a empty GR, to prevent errors with changing the seqlevels.
if (!length(gr)) {
warning(paste0(
"There were 0 variants (before filtering) found in the vcf file: ", vcf_file,
"\nYou might want to remove this sample from your analysis."
), call. = FALSE)
return(gr)
}
# Convert to a single chromosome naming standard.
if (change_seqnames == TRUE) {
tryCatch(
error = function(cnd) {
message(conditionMessage(cnd))
stop("The seqlevelStyle of the vcf could not be changed to that of the reference.
You can run this function with `change_seqnames = F` and `group = 'none'`,
to prevent this error.
However, you then have to make sure that the seqnames (chromosome names) are
the same between your vcfs and the reference BSgenome object.
(The message of the internal error causing this problem is shown above.)",
call. = FALSE
)
},
{
GenomeInfoDb::seqlevelsStyle(gr) <- GenomeInfoDb::seqlevelsStyle(genome)[1]
}
)
}
# Change the genome name of the granges
genome_name <- GenomeInfoDb::genome(genome)[[1]]
GenomeInfoDb::genome(gr) <- genome_name
# Filter for variants with the correct seqlevels
if (group != "none") {
tryCatch(
error = function(cnd) {
message(conditionMessage(cnd))
stop("The vcf could not be filtered for the specific seqlevels group.
You can run this function with `group = 'none'`, to prevent this error.
(The message of the internal error causing this problem is shown above.)",
call. = FALSE
)
},
{
gr <- .filter_seqlevels(gr, group, genome)
}
)
}
# Check for duplicate variants
if (remove_duplicate_variants == TRUE){
nr_duplicated <- gr %>%
duplicated() %>%
sum()
if (nr_duplicated) {
warning(paste0(
"There were ", nr_duplicated, " duplicated variants in vcf file: ",
vcf_file,
" They have been filtered out."
), call. = FALSE)
gr <- BiocGenerics::unique(gr)
}
}
return(gr)
}
#' Filter a GRanges object based on seqlevels
#'
#' This function filters a GRanges object based on a group of seqnames.
#'
#' @param gr GRanges object
#' @param group Selector for a seqlevel group. All seqlevels outside
#' of this group will be removed. Possible values:
#' * 'auto' for autosomal chromosomes;
#' * 'sex' for sex chromosomes;
#' * 'auto+sex' for autosomal + sex chromosomes (default);
#' * 'circular' for circular chromosomes;
#' * 'none' for no filtering, which results in keeping all
#' seqlevels from the VCF file.
#' @param genome BSgenome object
#' @return A GRanges object
#' @noRd
#'
.filter_seqlevels <- function(gr, group, genome) {
groups <- c()
# These variables are needed to extract the possible seqlevels
ref_style <- GenomeInfoDb::seqlevelsStyle(genome)
ref_organism <- GenomeInfoDb::organism(genome)
if (group == "auto+sex") {
groups <- c(
GenomeInfoDb::extractSeqlevelsByGroup(
species = ref_organism,
style = ref_style,
group = "auto"
),
GenomeInfoDb::extractSeqlevelsByGroup(
species = ref_organism,
style = ref_style,
group = "sex"
)
)
# In some cases, the seqlevelsStyle returns multiple styles.
# In this case, we need to do a little more work to extract
# a vector of seqlevels from it.
groups_names <- names(groups)
if (!is.null(groups_names)) {
# The seqlevels in the groups are now duplicated.
# The following code deduplicates the list items, so that
# creating a data frame will work as expected.
unique_names <- unique(groups_names)
groups <- lapply(unique_names, function(x) groups[groups_names == x])
groups <- lapply(groups, unlist, recursive = FALSE)
# In case there are multiple styles applied, we only use the first.
groups <- unique(as.vector(groups[[1]]))
}
}
else {
groups <- GenomeInfoDb::extractSeqlevelsByGroup(
species = ref_organism,
style = ref_style,
group = group
)
groups <- unique(as.vector(t(groups)))
}
# The provided VCF files may not contain all chromosomes that are
# available in the reference genome. Therefore, we only take the
# chromosomes that are actually available in the VCF file,
# belonging to the filter group.
groups <- BiocGenerics::intersect(groups, GenomeInfoDb::seqlevels(gr))
# We use 'pruning.mode = "tidy"' to minimize the deleterious effect
# on variants, yet, remove all variants that aren't in the filter
# group. By default, keepSeqlevels would produce an error.
gr <- GenomeInfoDb::keepSeqlevels(gr, groups, pruning.mode = "tidy")
return(gr)
}
|