1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plot_contribution_heatmap.R
\name{plot_contribution_heatmap}
\alias{plot_contribution_heatmap}
\title{Plot signature contribution heatmap}
\usage{
plot_contribution_heatmap(
contribution,
sig_order = NA,
sample_order = NA,
cluster_samples = TRUE,
cluster_sigs = FALSE,
method = "complete",
plot_values = FALSE
)
}
\arguments{
\item{contribution}{Signature contribution matrix}
\item{sig_order}{Character vector with the desired order of the signature names for plotting. Optional.}
\item{sample_order}{Character vector with the desired order of the sample names for plotting. Optional.}
\item{cluster_samples}{Hierarchically cluster samples based on euclidean distance. Default = T.}
\item{cluster_sigs}{Hierarchically cluster sigs based on euclidean distance. Default = T.}
\item{method}{The agglomeration method to be used for hierarchical clustering. This should be one of
"ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC)
or "centroid" (= UPGMC). Default = "complete".}
\item{plot_values}{Plot relative contribution values in heatmap. Default = F.}
}
\value{
Heatmap with relative contribution of each signature for each sample
}
\description{
Plot relative contribution of signatures in a heatmap
}
\examples{
## Extracting signatures can be computationally intensive, so
## we use pre-computed data generated with the following command:
# nmf_res <- extract_signatures(mut_mat, rank = 2)
nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns"
))
## Set signature names as row names in the contribution matrix
rownames(nmf_res$contribution) <- c("Signature A", "Signature B")
## Plot with clustering.
plot_contribution_heatmap(nmf_res$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)
## Define signature and sample order for plotting. If you have a mutation or signature
## matrix, then this can be done like in the example of 'plot_cosine_heatmap()'
sig_order <- c("Signature B", "Signature A")
sample_order <- c(
"colon1", "colon2", "colon3", "intestine1", "intestine2",
"intestine3", "liver3", "liver2", "liver1"
)
plot_contribution_heatmap(nmf_res$contribution,
cluster_samples = FALSE,
sig_order = sig_order, sample_order = sample_order
)
## It's also possible to create a contribution heatmap with text values
output_text <- plot_contribution_heatmap(nmf_res$contribution, plot_values = TRUE)
## This function can also be used on the result of a signature refitting analysis.
## Here we load a existing result as an example.
snv_refit <- readRDS(system.file("states/strict_snv_refit.rds",
package = "MutationalPatterns"
))
plot_contribution_heatmap(snv_refit$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)
}
\seealso{
\code{\link{extract_signatures}},
\code{\link{mut_matrix}},
\code{\link{plot_contribution}},
\code{\link{plot_cosine_heatmap}}
}
|