1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
### =========================================================================
### genotypeToSnpMatrix methods
### =========================================================================
## Coding for snpMatrix :
## 0 = missing OR multiallelic OR multi-ALT values
## 1 = homozygous reference (0|0 or 0/0)
## 2 = heterozygous (0|1 or 0/1 or 1|0 or 1/0)
## 3 = homozygous alternate (risk) allele (1|1 or 1/1)
## empty matrix to return if conditions not met
.emptySnpMatrix <- function() {
list(genotype=new("SnpMatrix"),
map=DataFrame(snp.names=character(),
allele.1=DNAStringSet(),
allele.2=DNAStringSetList(),
ignore=character()))
}
setMethod("genotypeToSnpMatrix", "CollapsedVCF",
function(x, uncertain=FALSE, ...)
{
ok <- suppressWarnings(require("snpStats", quietly=TRUE,
character.only=TRUE))
ok || stop("'snpStats' required; try biocLite('snpStats')", call.=FALSE)
alt <- alt(x)
if (is(alt, "CompressedCharacterList")) {
alt <- .toDNAStringSetList(alt)
if (all(elementLengths(alt) == 0L)) {
warning("No nucleotide ALT values were detected.")
return(.emptySnpMatrix())
}
}
ref <- ref(x)
if (ncol(x) == 0) {
warning("no samples in VCF")
}
if (!uncertain) {
gt <- geno(x)$GT
} else {
geno.cols <- row.names(geno(exptData(x)[["header"]]))
if ("GP" %in% geno.cols) {
gt <- geno(x)$GP
if (mode(gt) == "list") {
gt <- .matrixOfListsToArray(gt)
}
} else if ("GL" %in% geno.cols) {
gt <- geno(x)$GL
if (mode(gt) == "list") {
gt <- .matrixOfListsToArray(gt)
}
gt <- GLtoGP(gt)
} else {
warning("uncertain=TRUE requires GP or GL; returning NULL")
return(.emptySnpMatrix())
}
}
callGeneric(gt, ref, alt)
})
setMethod("genotypeToSnpMatrix", "array",
function(x, ref, alt, ...)
{
if (!is(ref, "DNAStringSet"))
stop("'ref' must be a DNAStringSet")
if (!is(alt, "DNAStringSetList"))
stop("'alt' must be a DNAStringSetList")
# query ref and alt alleles for valid SNPs
altelt <- elementLengths(alt) == 1L
snv <- .testForSNV(ref, alt)
# if x is a matrix, we have GT with a single value for each snp
if (is.matrix(x)) {
if (!all(altelt)) {
warning("variants with >1 ALT allele are set to NA")
x[!altelt,] <- ".|."
}
if (!all(snv)) {
warning("non-single nucleotide variations are set to NA")
x[!snv,] <- ".|."
}
map <- .genotypeToIntegerSNV(TRUE)
diploid <- x %in% names(map)
if (!all(diploid)) {
warning("non-diploid variants are set to NA")
x[!diploid] <- ".|."
}
mat <- matrix(map[x], nrow=ncol(x), ncol=nrow(x),
byrow=TRUE, dimnames=rev(dimnames(x)))
genotypes <- new("SnpMatrix", mat)
} else {
# if x is a 3D array, we have GP with multiple values for each snp
if (!all(altelt)) {
warning("variants with >1 ALT allele are set to NA")
x[!altelt,,] <- NA
}
if (!all(snv)) {
warning("non-single nucleotide variations are set to NA")
x[!snv,,] <- NA
}
# if there is more than one ALT allele for any variant,
# the 3rd dimension of the array will be too big
# any values here should already have been set to NA above
if (dim(x)[3] > 3) {
x <- x[,,1:3]
}
# for each sample, call probabilityToSnpMatrix
smlist <- list()
for (s in 1:ncol(x)) {
sm <- probabilityToSnpMatrix(x[,s,])
rownames(sm) <- colnames(x)[s]
smlist[[s]] <- sm
}
genotypes <- do.call(rbind, smlist)
}
flt <- !(snv & altelt)
map <- .createMap(rownames(x), ref, alt, flt)
list(genotypes = genotypes, map = map)
})
.createMap <- function(nms, ref, alt, flt)
{
if (is.null(ref))
DataFrame(snp.names=character(0),
allele.1=DNAStringSet(),
allele.2=DNAStringSetList(),
ignore=logical())
else
DataFrame(snp.names=nms,
allele.1=ref,
allele.2=alt,
ignore=flt)
}
probabilityToSnpMatrix <- function(probs) {
ok <- suppressWarnings(require("snpStats", quietly=TRUE,
character.only=TRUE))
ok || stop("'snpStats' required; try biocLite('snpStats')", call.=FALSE)
if (ncol(probs) != 3)
stop("input matrix should have 3 columns: P(A/A), P(A/B), P(B/B)")
# skip missing values when checking for validity of probabilities
missing <- rowSums(is.na(probs)) > 0
if (!isTRUE(all.equal(rowSums(probs[!missing,,drop=FALSE]),
rep(1,sum(!missing)),
check.attributes=FALSE,
check.names=FALSE)))
stop("sum of probabilities in each row of input matrix should = 1")
# post2g can't handle missing data
if (sum(missing) > 0) {
probs[missing,] <- 0
g <- post2g(probs)
g[missing] <- as.raw(0)
} else {
g <- post2g(probs)
}
g <- matrix(g, nrow=1, dimnames=list(NULL, rownames(probs)))
new("SnpMatrix", g)
}
GLtoGP <- function(gl) {
if (is.matrix(gl) & mode(gl) == "list") {
gp <- gl
for (i in 1:length(gp)) {
gp[[i]] <- 10^gl[[i]] / sum(10^gl[[i]], na.rm=TRUE)
}
gp
} else if (is.array(gl) & length(dim(gl)) == 3) {
aperm(apply(gl, c(1,2), function(x)
10^x / sum(10^x, na.rm=TRUE)),
c(2,3,1))
} else {
stop("gl must be a matrix of lists or a 3D array")
}
}
.matrixOfListsToArray <- function(x) {
# find number of elements of each cell of x
n <- elementLengths(x)
maxn <- max(n)
# for cells with less than the max number of elements, add NAs
idx <- n < maxn
x[idx] <- lapply(x[idx], function(a){c(a, rep(NA, maxn-length(a)))})
# unlist and convert to array
x <- array(unlist(x), dim=c(maxn, nrow(x), ncol(x)),
dimnames=list(NULL, rownames(x), colnames(x)))
x <- aperm(x, c(2,3,1))
x
}
|