File: getAttractors.R

package info (click to toggle)
r-cran-boolnet 2.1.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,016 kB
  • sloc: ansic: 12,452; sh: 16; makefile: 2
file content (260 lines) | stat: -rw-r--r-- 11,255 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Identify attractors in a Boolean network.
# <network> is a BooleanNetwork/SymbolicBooleanNetwork structure specifying the network.
# <method> specifies what kind of search is conducted: "exhaustive" performs a full search over all states,
# "random" generates <startStates> random initial states, and "chosen" uses the states supplied in <startStates>. 
# "sat.exhaustive" and "sat.restricted" start a SAT-based attractor search.
# <genesON> and <genesOFF> are lists of genes to be set to ON/1 or OFF/0 respectively.
# If <canonical> is true, states in the attractors are reordered such that the "smallest" state is the first
# <randomChainLength> is the number of random transitions performed for the identification of an asynchronous attractor
# If <avoidSelfLoops> is true, loops to the same state are eliminated from asynchronous attractors.
# <geneProbabilities> optionally specifies the probabilities of choosing a gene for an asynchronous update.
# <maxAttractorLength> specifies the maximum attractor length for method="sat.restricted" and the initial search length for method="sat.exhaustive".
# if <returnTable> is true, the transition table is included in the result.
getAttractors <- function (network, type=c("synchronous","asynchronous"), 
         method=c("exhaustive","sat.exhaustive","sat.restricted","random","chosen"), startStates=list(),
         genesON = c(), genesOFF = c(), canonical=TRUE,
         randomChainLength = 10000, avoidSelfLoops = TRUE, 
         geneProbabilities = NULL, 
		 maxAttractorLength=Inf, 
         returnTable=TRUE) 
{
  stopifnot(inherits(network,"BooleanNetwork") || inherits(network,"SymbolicBooleanNetwork"))
  
  symbolic <- inherits(network,"SymbolicBooleanNetwork")
  
  nonFixedPositions <- which(network$fixed == -1)
  
  type <- match.arg(type, c("synchronous","asynchronous"))
  
  if (type == "asynchronous")
  {
    if (symbolic)
      stop("Only synchronous updates are allowed for symbolic networks!")
    
    if (length(method) == 1 & match.arg(method) == "exhaustive")
      stop("Asynchronous attractor search cannot be performed in exhaustive search mode!")
    
    if (length(geneProbabilities) > 0 )
    {
      if (length(geneProbabilities) != length(network$genes))
        stop("Please supply exactly one probability for each gene!")
      if (abs(1.0 - sum(geneProbabilities)) > 0.0001)
        stop("The supplied gene probabilities do not sum up to 1!")
    }
    
  }
  
  if (!is.null(maxAttractorLength) && is.infinite(maxAttractorLength))
    maxAttractorLength <- NULL
  
  if (length(method) > 1)
  # if no method is supplied, infer method from the type of <startStates>
  {
    if (type == "asynchronous" & length(startStates) == 0)
    {
      startStates <- max(round(2 ^ sum(network$fixed == -1) / 20), 5)
      method = "random"
    }
    else
    if (is.numeric(startStates))
    {
      if (length(startStates) > 1)
        stop("Please supply either the number of start states or a list of start states in startStates!")
      else
        method <- "random"
    }
    else
    if (is.list(startStates) & (length(startStates) > 0))
      method <- "chosen"
    else
    if (!is.null(maxAttractorLength))
      method <- "sat.restricted"
    else
      method <- "exhaustive"
  }
 
  # fix genes according to genesON and genesOFF
  if (length(genesON) > 0) 
  {
    network <- fixGenes(network,genesON,1)
  }
  if (length(genesOFF) > 0) 
  {
    network <- fixGenes(network,genesOFF,0)
  }
    
  if (symbolic)
  {
    return(simulateSymbolicModel(network, 
                                 method=method, 
                                 startStates=startStates,
                                 maxAttractorLength=maxAttractorLength,
                                 returnGraph=returnTable && !(match.arg(method) %in% c("sat.exhaustive", "sat.restricted")),
                                 returnSequences=FALSE,
                                 returnAttractors=TRUE,
                                 canonical=canonical))
  }
  else
  {
    method <- match.arg(method,c("exhaustive","sat.exhaustive","sat.restricted","random","chosen"))

	if (method == "sat.restricted" && is.null(maxAttractorLength))
		stop("maxAttractorLength must be set for method=\"sat.restricted\"!")
	
    if ((length(network$genes) > 29) && (method == "exhaustive") && (type == "synchronous"))
    {
      method <- "sat.exhaustive"
      warning("An exhaustive state space search is restricted to networks with at most 29 genes. Switching to the SAT-based exhaustive search, which supports more genes, but does not return a transition table!")
    }
    else
    if (method %in% c("sat.exhaustive", "sat.restricted") && type != "synchronous")
      stop("SAT-based search can only be used for synchronous networks!")
    
    startStates <- switch(method,
      exhaustive = list(),
      sat.exhaustive = list(),
	  sat.restricted = list(),
      random = {
          if (!is.numeric(startStates))
            stop("Please supply the number of random states in startStates!")

          if (startStates > (2 ^ length(nonFixedPositions)))
          # more start states than in the full network
          {
            if (type == "synchronous")
            {
              list()
              warning(paste("The number of random states is set larger than the total",
                            "number of states. Performing an exhaustive search!"))
            }
            else
            {
              warning(paste("The number of random states is set larger than the total ",
                          "number of states! The maximum number of different states is ",2 ^ length(nonFixedPositions)),"!",sep="")
              startStates = 2 ^ length(nonFixedPositions)            
            }     
          }
          # generate random matrix
          generateRandomStartStates(network, startStates)

         },
      chosen = {
          if (!is.list(startStates) | length(startStates) == 0)
            stop("No start states supplied!")
          if (!all(sapply(startStates,function(x)(length(x) == length(network$genes)))))
            stop(paste("Please provide binary vectors with",length(network$genes),
              "elements in startStates!"))
    
            fixedGenes <- which(network$fixed != -1)
            statesValid <- sapply(startStates,function(state)
                                  {
                                    isTRUE(all(state[fixedGenes] == network$fixed[fixedGenes]))
                                  })
        startStates <- startStates[statesValid]
            if (!any(statesValid))
              stop("None of the supplied start states matched the restrictions of the fixed genes!")
            if (!all(statesValid))
              warning("Some of the supplied start states did not match the restrictions of the fixed genes and were removed!")    
              
          startStates
         }
    )
    
    if (!is.null(maxAttractorLength))
    {
      if (!(method %in% c("sat.exhaustive", "sat.restricted")))
        stop("maxAttractorLength can only be used with method=\"sat.exhaustive\" or method=\"sat-res.ricted\"!")
      maxAttractorLength <- as.integer(maxAttractorLength)
    }
    specialInitialization <- NULL
    
    convertedStartStates <- NULL

    if (length(startStates) > 0)
      convertedStartStates <- sapply(startStates,function(x)bin2dec(x,length(network$genes)))

    # the C code requires all interactions to be coded into one vector:
    # Assemble all input gene lists in one list <inputGenes>, and remember the split positions in <inputGenePositions>.
    inputGenes <- as.integer(unlist(lapply(network$interactions,function(interaction)interaction$input)))
    inputGenePositions <- as.integer(cumsum(c(0,sapply(network$interactions,
             function(interaction)length(interaction$input)))))

    # Do the same for the transition functions.
    transitionFunctions <- as.integer(unlist(lapply(network$interactions,function(interaction)interaction$func)))
    transitionFunctionPositions <- as.integer(cumsum(c(0,sapply(network$interactions,
                function(interaction)length(interaction$func)))))

   searchType <- switch(type,
      synchronous = if (method == "sat.exhaustive") 2 else if (method == "sat.restricted") 3 else 0,
      asynchronous = 1)
    
    on.exit(.C("freeAllMemory", PACKAGE = "BoolNet"))
    # Call the C code
    result <- .Call("getAttractors_R",inputGenes,inputGenePositions,
          transitionFunctions,transitionFunctionPositions,
          as.integer(network$fixed),
          as.integer(convertedStartStates),
          as.integer(searchType),
          as.double(geneProbabilities),
          as.integer(randomChainLength),
          as.integer(avoidSelfLoops),
          as.integer(returnTable),
          maxAttractorLength,
          PACKAGE="BoolNet")
    
    if (is.null(result))
      stop("An error occurred in external C code!")
    
    if (length(result$attractors) == 0)
      stop("getAttractors() was not able to identify any attractors! Please check the supplied parameters and restart!")
    
    if (length(network$genes) %% 32 == 0)
      numElementsPerEntry <- as.integer(length(network$genes) / 32)
    else
      numElementsPerEntry <- as.integer(length(network$genes) / 32  + 1)
    
    if (!is.null(result$stateInfo))
    {
      result$stateInfo$table <- matrix(result$stateInfo$table,nrow=numElementsPerEntry)
    
      if (!is.null(result$stateInfo$initialStates))
        result$stateInfo$initialStates <- matrix(result$stateInfo$initialStates,nrow=numElementsPerEntry)
    }
    
    for (i in seq_len(length(result$attractors)))
    {
      result$attractors[[i]]$involvedStates <- matrix(result$attractors[[i]]$involvedStates,nrow=numElementsPerEntry)
      if (canonical)
      # reorder states
        result$attractors[[i]]$involvedStates <- canonicalStateOrder(result$attractors[[i]]$involvedStates)
        
      if (!is.null(result$attractors[[i]]$initialStates))
        result$attractors[[i]]$initialStates <- matrix(result$attractors[[i]]$initialStates,nrow=numElementsPerEntry)
      if (!is.null(result$attractors[[i]]$nextStates))
        result$attractors[[i]]$nextStates <- matrix(result$attractors[[i]]$nextStates,nrow=numElementsPerEntry)
        
      if (result$attractors[[i]]$basinSize == 0)
        result$attractors[[i]]$basinSize <- NA
    }
    
    # order attractors according to their lengths
    attractorLengths <- sapply(result$attractors,function(attractor)ncol(attractor$involvedStates))  
    reordering <- order(attractorLengths)
    result$attractors <- result$attractors[reordering]
    
    if (!is.null(result$stateInfo))
    {
      inverseOrder <- sapply(seq_along(reordering),function(x)which(reordering == x))    
      result$stateInfo$attractorAssignment <- inverseOrder[result$stateInfo$attractorAssignment]
    }
    
    # extend the resulting structure by additional information, and assign a class      
    result$stateInfo$genes <- network$genes
    result$stateInfo$fixedGenes <- network$fixed

    if (!is.null(result$stateInfo$table))
      class(result$stateInfo) <- "BooleanStateInfo"
    class(result) <- "AttractorInfo"
    return(result)
  }
}