1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
# Load a network in a specified rule description language
# from file <file>.
# <bodySeparator> is the character that separates targets and factors
# <lowercaseGenes> specifies whether gene names are converted to lower case
loadNetwork <- function(file, bodySeparator=",", lowercaseGenes=FALSE, symbolic=FALSE)
{
func <- readLines(file,-1)
# strip comments
func <- gsub("#.*", "", trim(func))
func <- func[nchar(func) > 0]
# check header
if (length(func) == 0)
stop("Header expected!")
header <- func[1]
header <- tolower(trim(strsplit(header, bodySeparator)[[1]]))
if (length(header) < 2 || header[1] != "targets" || !(header[2] %in% c("functions","factors")) ||
(length(header) == 3 && header[3] != "probabilities"))
stop(paste("Invalid header:", func[1]))
func <- func[-1]
if (lowercaseGenes)
func <- tolower(func)
# Replace all invalid characters to be able to load most networks
func <- gsub("[^\\[\\]a-zA-Z0-9_\\|\\&!\\(\\) \t\\-+=.,]+","_", func, perl=TRUE)
tmp <- unname(lapply(func,function(x)
# split strings at separators that are NOT
# inside a bracket block
{
bracketCount <- 0
lastIdx <- 1
chars <- strsplit(x,split="")[[1]]
res <- c()
if (length(chars) > 0)
{
for (i in seq_along(chars))
{
if (chars[i] == "(")
bracketCount <- bracketCount + 1
else
if (chars[i] == ")")
bracketCount <- bracketCount -1
else
if (chars[i] == bodySeparator && bracketCount == 0)
{
res <- c(res, trim(paste(chars[lastIdx:(i-1)],collapse="")))
lastIdx <- i + 1
}
}
res <- c(res, trim(paste(chars[lastIdx:length(chars)],collapse="")))
}
return(res)
}))
targets <- sapply(tmp,function(rule)trim(rule[1]))
for (target in targets)
{
if (regexec("^[a-zA-Z_][a-zA-Z0-9_]*$", target)[[1]] == -1)
stop(paste("Invalid gene name:",target))
}
factors <- sapply(tmp,function(rule)trim(rule[2]))
temporal <- length(grep("timeis|timelt|timegt|\\[|\\]", factors, ignore.case=TRUE) > 0)
if (temporal && !symbolic)
{
warning("The network contains temporal elements. This requires loading the model with symbolic=TRUE!")
symbolic <- TRUE
}
probabilities <- sapply(tmp,function(rule)
{
if (length(rule) >= 3)
as.numeric(trim(rule[3]))
else
1.0
})
factors.tmp <- lapply(factors,matchNames)
# create list of all gene names in both sides of the functions
genes <- unique(c(targets,unname(unlist(factors.tmp))))
isProbabilistic <- (length(unique(targets)) < length(targets))
if (symbolic)
{
if (isProbabilistic)
stop("Probabilistic networks cannot be loaded with symbolic=TRUE!")
interactions <- lapply(factors, function(rule)parseBooleanFunction(rule, genes))
onlyInputs <- setdiff(genes,targets)
if(length(onlyInputs) > 0)
# some genes are only used as inputs, but are not involved in the network
# -> create dummy input and function
{
for(gene in onlyInputs)
{
warning(paste("There is no transition function for gene \"",
gene,"\"! Assuming an input!",sep=""))
interactions[[gene]] = parseBooleanFunction(gene, genes)
}
}
delays <- apply(sapply(interactions,maxTimeDelay,genes=genes),1,max)
names(interactions) <- genes
fixed <- as.integer(sapply(interactions, function(int)
{
if (int$type == "constant")
int$value
else
-1L
}))
names(fixed) <- genes
res <- list(genes = genes, interactions=interactions, fixed=fixed)
res$internalStructs <- .Call("constructNetworkTrees_R",res)
res$timeDelays <- delays
class(res) <- "SymbolicBooleanNetwork"
return(res)
}
else
{
# extract "real" gene names from the list, drop constants
#suppressWarnings(genes <- genes[is.na(as.integer(genes))])
fixed <- rep(-1,length(genes))
names(fixed) <- genes
interactions <- list()
for(i in seq_along(targets))
{
target <- targets[i]
interaction <- generateInteraction(factors[i], genes);
if (isProbabilistic)
{
interaction$probability <- probabilities[i]
interactions[[target]][[length(interactions[[target]]) + 1]] <- interaction
}
else
{
if (length(interaction$func) == 1)
# this is a constant gene => fix it
{
fixed[target] <- interaction$func
}
interactions[[target]] <- interaction
}
}
onlyInputs <- setdiff(genes,targets)
if(length(onlyInputs) > 0)
# some genes are only used as inputs, but are not involved in the network
# -> create dummy input and function
{
for(gene in onlyInputs)
{
warning(paste("There is no transition function for gene \"",
gene,"\"! Assuming an input!",sep=""))
if (isProbabilistic)
interactions[[gene]][[1]] = list(input = length(interactions)+1,func=c(0,1),
expression = gene, probability=1.0)
else
interactions[[gene]] = list(input = length(interactions)+1,func=c(0,1),
expression = gene)
}
}
if (isProbabilistic)
{
wrongProb <- sapply(interactions,function(interaction)
{
abs(1.0-sum(sapply(interaction,function(func)func$probability))) > 0.0001
})
if (any(wrongProb))
stop(paste("The probabilities of gene(s) ",paste(genes[wrongProb],collapse=", ")," do not sum up to 1!",sep=""))
}
res <- list(interactions = interactions,
genes = genes,
fixed = fixed)
if (isProbabilistic)
class(res) <- "ProbabilisticBooleanNetwork"
else
class(res) <- "BooleanNetwork"
return(res)
}
}
matchNames <- function(rule)
{
regexpr <- "([_a-zA-Z][_a-zA-Z0-9]*)[,| |\\)|\\||\\&|\\[]"
rule <- paste(gsub(" ", "", rule, fixed=TRUE)," ",sep="")
res <- unique(unname(sapply(regmatches(rule,gregexpr(regexpr, rule))[[1]],
function(m)
{
sapply(regmatches(m,regexec(regexpr,m)),function(x)x[2])
})))
# remove operators
isOp <- sapply(res, function(x)
{
tolower(x) %in% c("all", "any",
"sumis", "sumgt", "sumlt",
"maj", "timegt", "timelt", "timeis")
})
return(res[!isOp])
}
|