1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
# Reconstruct a Boolean network from a transition table or a list of time series in <measurements>.
# If <method> is "bestfit", Lähdesmäki's best-fit extension algorithm is called.
# If <method> is "reveal", Liang's REVEAL algorithm is called.
# <maxK> specifies the maximum number of input genes of a function.
# If <readableFunctions> is true, DNF representations of the functions are generated.
reconstructNetwork <- function(measurements,method=c("bestfit","reveal"),maxK=5,
requiredDependencies = NULL, excludedDependencies = NULL, perturbations=NULL,
readableFunctions=FALSE, allSolutions=FALSE, returnPBN=FALSE)
{
if (maxK < 0)
stop("maxK must be >= 0!")
# determine method to use
meth <- switch(match.arg(method,c("bestfit","reveal")),
bestfit=0,
reveal=1,
stop("'method' must be one of \"bestfit\",\"reveal\""))
perturbationMatrix <- NULL
if (inherits(measurements,"TransitionTable"))
# preprocess transition table and call algorithm
{
numGenes <- (ncol(measurements) - 2) / 2
if (numGenes < maxK)
{
maxK <- numGenes
warning(paste("maxK was chosen greater than the total number of input genes and reset to ",numGenes,"!",sep=""))
}
if (!is.null(perturbations))
{
if (!all(perturbations %in% c(0,1,-1,NA)))
stop("The perturbation matrix may only contain the values 0,1,-1 and NA!")
perturbations[is.na(perturbations)] <- -1
if (is.null(dim(perturbations)))
perturbations <- matrix(perturbations,ncol=1)
if (ncol(perturbations) != 1 && ncol(perturbations) != nrow(measurements))
stop(paste("There must be either one global vector of perturbations, or a matrix",
"containing exact one column for each time series!"))
if (nrow(perturbations) != numGenes)
stop("The perturbation matrix must have exactly the same number of rows as the measurements!")
if (ncol(perturbations) == 1)
{
perturbationMatrix <- matrix(-1,nrow=numGenes,ncol=nrow(measurements))
for (j in seq_len(nrow(measurements)))
perturbationMatrix[,j] <- perturbations[,1]
}
else
perturbationMatrix <- as.matrix(perturbations)
}
inputStates <- as.integer(t(as.matrix(measurements[,seq_len(numGenes)])))
outputStates <- as.integer(t(as.matrix(measurements[,(numGenes+1):(2*numGenes)])))
numStates <- nrow(measurements)
genenames <- sapply(colnames(measurements)[seq_len(numGenes)],function(x)strsplit(x,".",fixed=TRUE)[[1]][2])
}
else
# the measurements are time series
{
if (!is.null(dim(measurements)))
# only one time series => create list
measurements <- list(measurements)
numGenes <- nrow(measurements[[1]])
if (numGenes < maxK)
{
maxK <- numGenes
warning(paste("maxK was chosen greater than the total number of input genes and reset to ",numGenes,"!",sep=""))
}
if (is.null(perturbations) && !is.null(measurements$perturbations))
{
perturbations <- measurements$perturbations
measurements$perturbations <- NULL
}
if (!is.null(perturbations))
{
if (!all(perturbations %in% c(0,1,-1,NA)))
stop("The perturbation matrix may only contain the values 0,1,-1 and NA!")
perturbations[is.na(perturbations)] <- -1
if (is.null(dim(perturbations)))
perturbations <- matrix(perturbations,ncol=1)
if (ncol(perturbations) != 1 && ncol(perturbations) != length(measurements))
stop(paste("There must be either one global vector of perturbations, or a matrix",
"containing exact one column for each time series!"))
if (nrow(perturbations) != numGenes)
stop("The perturbation matrix must have exactly the same number of rows as the measurements!")
}
perturbationMatrix <- c()
genenames <- rownames(measurements[[1]])
if (is.null(genenames))
genenames <- paste("Gene",seq_len(numGenes))
inputStates <- c()
outputStates <- c()
for (i in seq_along(measurements))
# iterate over all time series and build state vectors
{
measurement <- measurements[[i]]
if (numGenes != nrow(measurement))
stop("All measurement matrices must contain the same genes!")
inputStates <- c(inputStates,as.integer(as.matrix(measurement[,1:(ncol(measurement)-1)])))
outputStates <- c(outputStates,as.integer(as.matrix(measurement[,2:ncol(measurement)])))
if (!is.null(perturbations))
{
for (j in seq_len(ncol(measurement) - 1))
{
if (ncol(perturbations) == 1)
perturbationMatrix <- cbind(perturbationMatrix, perturbations[,1])
else
perturbationMatrix <- cbind(perturbationMatrix, perturbations[,i])
}
}
}
numStates <- as.integer(length(inputStates) / numGenes)
}
if (is.null(requiredDependencies))
requiredDepMatrix <- NULL
else
{
if (is.null(names(requiredDependencies)))
names(requiredDependencies) <- genenames
if (length(union(names(requiredDependencies),genenames)) != length(genenames))
stop("The required dependencies must consist of gene names that are comprised in the measurements!")
requiredDepMatrix <- matrix(0,nrow=numGenes,ncol=numGenes)
colnames(requiredDepMatrix) <- genenames
rownames(requiredDepMatrix) <- genenames
maxRequired <- 0
for (i in seq_along(requiredDependencies))
{
maxRequired <- max(maxRequired, length(requiredDependencies[i]))
for (el in requiredDependencies[i])
requiredDepMatrix[el,names(requiredDependencies)[i]] <- 1
}
if (maxRequired > maxK)
{
warning(paste("The number of required dependencies is greater than maxK! Setting maxK to ", maxRequired, "!", sep=""))
maxK <- maxRequired
}
requiredDepMatrix <- as.integer(requiredDepMatrix)
}
if (is.null(excludedDependencies))
excludedDepMatrix <- NULL
else
{
if (is.null(names(excludedDependencies)))
names(excludedDependencies) <- genenames
if (length(union(names(excludedDependencies),genenames)) != length(genenames))
stop("The excluded dependencies must consist of gene names that are comprised in the measurements!")
excludedDepMatrix <- matrix(0,nrow=numGenes,ncol=numGenes)
colnames(excludedDepMatrix) <- genenames
rownames(excludedDepMatrix) <- genenames
for (i in seq_along(excludedDependencies))
{
gene <- names(excludedDependencies)[i]
if (!is.null(requiredDependencies) &&
!is.null(requiredDependencies[[gene]]))
{
conflicts <- intersect(requiredDependencies[[gene]],
excludedDependencies[[gene]])
if (length(conflicts) > 0)
stop(paste("For gene ",gene,
", potential inputs were specified both as required and excluded dependencies: ",
paste(conflicts, collapse=", "), sep=""))
}
for (el in excludedDependencies[i])
excludedDepMatrix[el,names(excludedDependencies)[i]] <- 1
}
excludedDepMatrix <- as.integer(excludedDepMatrix)
}
if (!is.null(perturbations))
perturbationMatrix <- as.integer(perturbationMatrix)
on.exit(.C("freeAllMemory", PACKAGE = "BoolNet"))
# call C code
res <- .Call("reconstructNetwork_R",
inputStates,
outputStates,
perturbationMatrix,
as.integer(numStates),
requiredDepMatrix,
excludedDepMatrix,
as.integer(maxK),
as.integer(meth),
as.integer(allSolutions),
as.integer(returnPBN))
if (any(sapply(res,function(interaction)length(interaction)==0)))
# some function lists are empty
warning("Some functions could not be inferred. Possibly the input data is noisy or maxK was chosen too small!")
# prepare result object
res <- list(genes=genenames,
interactions=lapply(res,function(gene)
lapply(gene,function(interaction)
{
interaction$expression <-
getInteractionString(readableFunctions,
interaction$func,
genenames[interaction$input])
if (returnPBN)
interaction$probability <- 1.0/length(gene)
interaction
})),
fixed=sapply(res,function(gene)
{
if (length(gene) == 0)
-1
else
if (gene[[1]]$input[1] == 0)
gene[[1]]$func[1]
else
-1
}))
names(res$interactions) <- res$genes
names(res$fixed) <- res$genes
if (returnPBN)
class(res) <- "ProbabilisticBooleanNetwork"
else
class(res) <- "BooleanNetworkCollection"
if (allSolutions)
# simplify functions and remove duplicates
{
res <- simplifyNetwork(res)
res$interactions <- lapply(res$interactions,function(interaction)
{
duplicates <- duplicated(sapply(interaction,function(func)func$expression))
return(interaction[!duplicates])
})
}
return(res)
}
|