1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
# determination of P(k,N,w)
pval <- function(k,N,w)
{
return((k/w-N-1)*b(k,N,w)+2*Gb(k,N,w))
}
# helper function
b<-function(k,N,w)
{
return(choose(N,k)*w^k*(1-w)^(N-k))
}
# helper function
Gb<-function(k,N,w)
{
sum<-0
for(i in k:N)
{
sum <- sum + b(i,N,w)
}
return(sum)
}
# If two significant overlapping windows were found, these windows are
# merged. If the windows do not overlap, two different windows are stored
# in a list
listadapt <- function(lcur,lnew)
{
if(length(lcur)==0)
{
lcur=lnew
return(lcur)
}
else
{
if(lnew[[1]][1]<=lcur[[length(lcur)]][2])
{
lcur[[length(lcur)]][2]<-lnew[[1]][2]
if(lcur[[length(lcur)]][3]>lnew[[1]][3])
{
lcur[[length(lcur)]][3] <- lnew[[1]][3]
}
return(lcur)
}
else
{
lcur<-append(lcur,lnew)
return(lcur)
}
}
}
# This method searches for data accumulations by shifting a window with
# window size <w> across the data and deciding at each position if there
# is a data accumulation. To test this, a scan statistic with significance
# level <sign.level> is used.
scanStatistic <- function(vect, w=0.25, sign.level=0.1)
{
temp<-vect
vect <-unlist(vect)
vsort <- sort(vect)
N <- length(vect)
range <- (max(vect)) - (min(vect))
windowsize <- range*w
N <- length(vect)
binarizeddata<-temp
res<-list()
lcur<-list()
# shift a fixed window over the data
# the window is moved from point to point
for(i in seq_along(vect))
{
start <- vsort[i]
stop <- vsort[i] + windowsize
k <- length(vect[(vect >= start) & (vect <= stop)])
p <- pval(k,N,w)
if(p>1)
{
p=0.99
}
if(p<=sign.level & p>0 & k >= (N*w-1) & k > 2)
{
res <- listadapt(res,list(c(start,stop,p)))
}
}
# if no accumulation for a fixed <sign.level> was found, the
# binarization is rejected, and we search for a accumulation
# with a higher sign.level.
if(length(res)==0)
{
while(TRUE)
{
sign.level=sign.level+0.05
if(sign.level>2)
{
binarizeddata<-(sapply(vect,function(x) 0))
return(list(bindata=binarizeddata,thresholds=NA,reject=TRUE))
}
for(i in seq_along(vect))
{
start <- vsort[i]
stop <- vsort[i] + windowsize
k <- length(vect[(vect >= start) & (vect <= stop)])
p <- pval(k,N,w)
if(p>1)
{
p=0.99
}
if(p<=sign.level & p>0 & k >= (N*w-1) & k > 2)
{
#res <- append(res,list(c(start=start,stop=stop,pval=p)))
res <- listadapt(res,list(c(start,stop,p)))
}
}
if(length(res)!=0)
break
}
reject<-TRUE
}
else
{
reject<-FALSE
}
# search the window with the smallest sign.level.
# this window is used for the binarization
min=1000
ind=0
for(i in seq_along(res))
{
if(res[[i]][3]<min)
{
ind=i
min=res[[i]][3]
}
}
# are more points on the left or on the right side
# of the window? Based on this, the binarization is performed
bigger <- length(vect[vect > res[[ind]][2]])
smaller <- length(vect[vect < res[[ind]][1]])
if(bigger > smaller)
{
threshold<-res[[ind]][2]
small<-tail(vsort[vsort<=threshold],n=1)
big<-vsort[vsort>threshold][1]
thres<-(big+small)/2
for(i in seq_along(vect))
{
if(vect[i]<=threshold)
{
binarizeddata[i]<-0
}
else
{
binarizeddata[i]<-1
}
}
}
else
{
threshold<-res[[ind]][1]
small<-tail(vsort[vsort<threshold],n=1)
big<-vsort[vsort>=threshold][1]
thres<-(big+small)/2
for(i in seq_along(vect))
{
if(vect[i]>=threshold)
{
binarizeddata[i]<-1
}
else
{
binarizeddata[i]<-0
}
}
}
return(list(bindata=binarizeddata,thresholds=as.numeric(thres),reject=reject))
}
|