1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
# Calculate the Gini index of <x>
Gini <- function(x)
{
n <- length(x)
x <- sort(x)
1/(n-1)*(n+1-2*(sum((n+1-seq_len(n))*x)/sum(x)))
}
# Compare the Hamming distances of the successor states of states and their perturbed copies.
testTransitionRobustness <- function(network, accumulate=TRUE, params=list())
{
res <- do.call("perturbTrajectories", c(list(network=network, measure="hamming"), params))
if (accumulate)
return(res$value)
else
return(res$stat)
}
# Test attractor robustness by searching the original attractor
# in <params$numSamples> perturbed copies of <network> or by perturbing the state trajectories
# and checking whether the attractors change.
testAttractorRobustness <- function(network, accumulate=TRUE, params=list())
{
origAttrs <- getAttractors(network,canonical=TRUE)
# decode parameters
if (is.null(params$perturb))
perturb <- "functions"
else
perturb <- params$perturb
if (params$perturb == "trajectories")
{
params$perturb <- NULL
if (!is.null(params$copies))
{
params$numSamples <- params$copies
params$copies <- NULL
}
res <- do.call("perturbTrajectories", c(list(network=network, measure="attractor"), params))
if (accumulate)
return(res$value)
else
return(res$stat)
}
else
{
if (is.null(params$method))
method <- "bitflip"
else
method <- params$method
if (is.null(params$maxNumBits))
maxNumBits <- 1
else
maxNumBits <- params$maxNumBits
if (is.null(params$numStates))
numStates <- max(1,2^length(network$genes)/100)
else
numStates <- params$numStates
if (is.null(params$simplify))
simplify <- (perturb[1] == "states")
else
simplify <- params$simplify
if (is.null(params$readableFunctions))
readableFunctions <- FALSE
else
readableFunctions <- params$readableFunctions
if (is.null(params$excludeFixed))
excludeFixed <- TRUE
else
excludeFixed <- params$excludeFixed
if (!is.null(params$numSamples))
copies <- params$numSamples
else
if (is.null(params$copies))
copies <- 100
else
copies <- params$copies
perturbationResults <- unlist(sapply(seq_len(copies),function(copy)
{
# get attractors of perturbed network
perturbedAttrs <- getAttractors(perturbNetwork(network,
perturb=perturb,
method=method,
maxNumBits=maxNumBits,
numStates=numStates,
simplify=simplify,
readableFunctions=readableFunctions,
excludeFixed=excludeFixed))
# try to find original attractors in perturbed network
attractorIndices <- sapply(origAttrs$attractors,function(attractor1)
{
index <- which(sapply(perturbedAttrs$attractors,function(attractor2)
{
identical(attractor1,attractor2)
}))
if (length(index) == 0)
NA
else
index
})
return(sum(!is.na(attractorIndices)))
}))
if (accumulate)
# return overall percentage of found attractors
return(sum(perturbationResults)/(length(origAttrs$attractors) * copies) * 100)
else
# return percentage of found attractors for each run
return(perturbationResults/(length(origAttrs$attractors)) * 100)
}
}
# Calculate the in-degrees of states in the network.
# If <accumulate> is true, the in-degrees are accumulated
# using the Gini coefficient
testIndegree <- function(network,accumulate=TRUE,params)
{
attr <- getAttractors(network)
graph <- plotStateGraph(attr,plotIt=FALSE)
# calculate in-degree using igraph
if (accumulate)
# accumulate using Gini index
return(Gini(degree(graph,mode="in",loops=TRUE)))
else
# return the raw degrees
return(degree(graph,mode="in",loops=TRUE))
}
# Calculate the Kullback-Leibler distance of
# two distributions <x> and <y>.
# <bins> is the number of bins used for discretization.
# <minVal> is the minimum value to be used instead of zero
kullbackLeiblerDistance <- function(x,y,bins=list(),minVal=0.00001)
{
x <- cut(x,breaks=bins,include.lowest=T,right=F)
y <- cut(y,breaks=bins,include.lowest=T,right=F)
tx <- table(x)
ty <- table(y)
tx <- tx/length(x)
ty <- ty/length(y)
tx[tx < minVal] <- minVal
ty[ty < minVal] <- minVal
return(sum(tx*(log(tx/ty))))
}
# Generic function to test properties of <network> against random networks.
# <numRandomNets> specifies the number of random networks to generate.
# <testFunction> is the name of a function that returns a distribution of test values or a test statistic for each network,
# which receives <testFunctionParams> as optional parameters.
# If <accumulation> is "characteristic", the test function must return a characteristic/test statistic value for each value, and
# a histogram of these value is plotted with a line for the original network.
# If <accumulation> is "kullback_leibler", a histogram of the Kullback-Leibler distances of the test value distribution for the original network
# and the random networks is plotted.
# <sign.level> is the desired significance level for <network> in comparison to the random networks.
# <functionGeneration>,<simplify>,<noIrrelevantGenes>,<validationFunction>,<failureInterations,
# <d_lattice>,<zeroBias> are the corresponding parameters of generateRandomNKNetwork().
# <title> is the title of the plot, <xlab> is its x axis caption, <breaks> is the corresponding histogram parameter, and ... supplies further
# graphical parameters
testNetworkProperties <- function(network, numRandomNets=100, testFunction="testIndegree",
testFunctionParams=list(),
accumulation=c("characteristic","kullback_leibler"),
alternative=c("greater","less"),
sign.level=0.05, drawSignificanceLevel=TRUE,
klBins,klMinVal=0.00001,
linkage=c("uniform","lattice"),
functionGeneration=c("uniform","biased"),
validationFunction, failureIterations=10000,
simplify=FALSE, noIrrelevantGenes=TRUE,
d_lattice=1, zeroBias=0.5,
title="", xlab, xlim, breaks=30,
...)
{
stopifnot(inherits(network,"BooleanNetwork") || inherits(network,"SymbolicBooleanNetwork"))
if (is.character(testFunction))
testFunctionName <- testFunction
else
testFunctionName <- ""
testFunction <- match.fun(testFunction)
accumulate <- (match.arg(accumulation) == "characteristic")
origResult <- testFunction(network,accumulate,testFunctionParams)
numGenes <- length(network$interactions)
if (inherits(network,"SymbolicBooleanNetwork"))
inputGenes <- sapply(network$interactions,function(interaction)length(getInputs(interaction)))
else
inputGenes <- sapply(network$interactions,function(interaction)length(interaction$input))
if (missing(validationFunction))
validationFunction <- NULL
randomResults <- lapply(seq_len(numRandomNets),function(i)
{
randomNet <- generateRandomNKNetwork(n=numGenes,
k=inputGenes,
topology="fixed",
linkage=linkage,
functionGeneration=functionGeneration,
validationFunction=validationFunction,
failureIterations=failureIterations,
simplify=simplify,
noIrrelevantGenes=noIrrelevantGenes,
d_lattice=d_lattice,
zeroBias=zeroBias)
randomRes <- testFunction(randomNet,accumulate,testFunctionParams)
return(randomRes)
})
if (accumulate)
randomResults <- unlist(randomResults)
args <- list(...)
res <- switch(match.arg(accumulation,c("characteristic","kullback_leibler")),
characteristic = {
# get one value for each random network, and plot a histogram of these values
if (missing(xlab))
{
xlab <- switch(testFunctionName,
testIndegree = "Gini index of state in-degrees",
testAttractorRobustness = "% of identical attractors",
testTransitionRobustness = "Normalized Hamming distance",
"accumulated results"
)
}
if (missing(xlim))
{
#xlim <- switch(testFunctionName,
# testIndegree = c(0,1),
# testAttractorRobustness = c(0,100),
# c(min(c(origResult,randomResults)),
# max(c(origResult,randomResults)))
#)
xlim <- range(c(origResult, randomResults))
}
alternative <- match.arg(alternative, c("greater","less"))
# calculate p-value
if (alternative == "greater")
pval <- sum(randomResults < origResult) / length(randomResults)
else
pval <- sum(randomResults > origResult) / length(randomResults)
# plot histogram
if (testFunctionName == "testIndegree" | testFunctionName == "testAttractorRobustness")
{
r <- hist(randomResults,xlim=xlim,xlab=xlab,main=title,xaxt="n",...)
axis(side=1,at=seq(xlim[1],xlim[2],length.out=11))
}
else
{
# plot with default axis
r <- hist(randomResults,xlim=xlim,xlab=xlab,main=title,...)
}
# plot result for original network
abline(v=origResult,col="red")
if (alternative == "greater")
text(x=origResult,pos=2,y=max(r$counts)*0.75,
labels=paste("> ",round(pval * 100),"%\nof random results",sep=""),
col="red",cex=0.75)
else
text(x=origResult,pos=4,y=max(r$counts)*0.75,
labels=paste("< ",round(pval * 100),"%\nof random results",sep=""),
col="red",cex=0.75)
if (drawSignificanceLevel)
# plot line for significance level
{
if (alternative == "greater")
{
quant <- quantile(randomResults,1.0-sign.level)
abline(v=quant,col="blue")
text(x=quant,pos=2,y=max(r$counts)*0.85,
labels=paste((1.0-sign.level) * 100,"% quantile",sep=""),
col="blue",cex=0.75)
}
else
{
quant <- quantile(randomResults,sign.level)
abline(v=quant,col="blue")
text(x=quant,pos=4,y=max(r$counts)*0.85,
labels=paste(sign.level * 100,"% quantile",sep=""),
col="blue",cex=0.75)
}
}
list(hist=r,pval=1.0-pval,significant=(1.0-pval<=sign.level))
},
kullback_leibler =
{
# a distribution of values is returned for each network,
# plot the Kullback-Leibler distances to the original network
if (missing(xlab))
xlab <- "Kullback-Leibler distance"
if (missing(klBins))
{
bins <- unique(c(origResult,unlist(randomResults)))
bins <- c(bins,max(bins) + 1)
}
else
{
bins <- unique(c(origResult,unlist(randomResults)))
if (klBins < length(bins))
bins <- seq(min(bins),max(bins),length.out=klBins+1)
else
bins <- c(bins,max(bins) + 1)
}
vals <- sapply(randomResults,function(results)
kullbackLeiblerDistance(origResult,results,bins=bins,minVal=klMinVal))
r <- hist(vals,xlab=xlab,main=title,breaks=breaks,...)
list(hist=r)
},
stop("'accumulation' must be one of \"characteristic\",\"kullback_leibler\""))
return(res)
}
|