1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/cutree.dendrogram.R
\name{cutree}
\alias{cutree}
\alias{cutree.default}
\alias{cutree.hclust}
\alias{cutree.phylo}
\alias{cutree.agnes}
\alias{cutree.diana}
\alias{cutree.dendrogram}
\title{Cut a Tree (Dendrogram/hclust/phylo) into Groups of Data}
\usage{
cutree(tree, k = NULL, h = NULL, ...)
\method{cutree}{default}(tree, k = NULL, h = NULL, ...)
\method{cutree}{hclust}(
tree,
k = NULL,
h = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"),
NA_to_0L = TRUE,
...
)
\method{cutree}{phylo}(tree, k = NULL, h = NULL, ...)
\method{cutree}{phylo}(tree, k = NULL, h = NULL, ...)
\method{cutree}{agnes}(tree, k = NULL, h = NULL, ...)
\method{cutree}{diana}(tree, k = NULL, h = NULL, ...)
\method{cutree}{dendrogram}(
tree,
k = NULL,
h = NULL,
dend_heights_per_k = NULL,
use_labels_not_values = TRUE,
order_clusters_as_data = TRUE,
warn = dendextend_options("warn"),
try_cutree_hclust = TRUE,
NA_to_0L = TRUE,
...
)
}
\arguments{
\item{tree}{a dendrogram object}
\item{k}{numeric scalar (OR a vector) with the number of clusters
the tree should be cut into.}
\item{h}{numeric scalar (OR a vector) with a height where the tree
should be cut.}
\item{...}{(not currently in use)}
\item{use_labels_not_values}{logical, defaults to TRUE. If the actual labels of the
clusters do not matter - and we want to gain speed (say, 10 times faster) -
then use FALSE (gives the "leaves order" instead of their labels.).
This is passed to \code{cutree_1h.dendrogram}.}
\item{order_clusters_as_data}{logical, defaults to TRUE. There are two ways by which
to order the clusters: 1) By the order of the original data. 2) by the order of the
labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
to TRUE.
This is passed to \code{cutree_1h.dendrogram}.}
\item{warn}{logical (default from dendextend_options("warn") is FALSE).
Set if warning are to be issued, it is safer to keep this at TRUE,
but for keeping the noise down, the default is FALSE.
Should the function send a warning in case the desried k is not available?}
\item{NA_to_0L}{logical. default is TRUE. When no clusters are possible,
Should the function return 0 (TRUE, default), or NA (when set to FALSE).}
\item{dend_heights_per_k}{a named vector that resulted from running.
\code{heights_per_k.dendrogram}. When running the function many times,
supplying this object will help improve the running time if using k!=NULL .}
\item{try_cutree_hclust}{logical. default is TRUE. Since cutree for hclust is
MUCH faster than for dendrogram - cutree.dendrogram will first try to change the
dendrogram into an hclust object. If it will fail (for example, with unbranched trees),
it will continue using the cutree.dendrogram function.
If try_cutree_hclust=FALSE, it will force to use cutree.dendrogram and not
cutree.hclust.}
}
\value{
If k or h are scalar - \code{cutree.dendrogram} returns an integer vector with group
memberships.
Otherwise a matrix with group memberships is returned where each column
corresponds to the elements of k or h, respectively
(which are also used as column names).
In case there exists no such k for which exists a relevant split of the
dendrogram, a warning is issued to the user, and NA is returned.
}
\description{
Cuts a dendrogram tree into several groups
by specifying the desired number of clusters k(s), or cut height(s).
For \code{hclust.dendrogram} -
In case there exists no such k for which exists a relevant split of the
dendrogram, a warning is issued to the user, and NA is returned.
}
\details{
At least one of k or h must be specified, k overrides h if both are given.
as opposed to \link[stats]{cutree} for hclust, \code{cutree.dendrogram} allows the
cutting of trees at a given height also for non-ultrametric trees
(ultrametric tree == a tree with monotone clustering heights).
}
\examples{
\dontrun{
hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
dend <- as.dendrogram(hc)
unbranch_dend <- unbranch(dend, 2)
cutree(hc, k = 2:4) # on hclust
cutree(dend, k = 2:4) # on dendrogram
cutree(hc, k = 2) # on hclust
cutree(dend, k = 2) # on dendrogram
cutree(dend, h = c(20, 25.5, 50, 170))
cutree(hc, h = c(20, 25.5, 50, 170))
# the default (ordered by original data's order)
cutree(dend, k = 2:3, order_clusters_as_data = FALSE)
labels(dend)
# as.hclust(unbranch_dend) # ERROR - can not do this...
cutree(unbranch_dend, k = 2) # all NA's
cutree(unbranch_dend, k = 1:4)
cutree(unbranch_dend, h = c(20, 25.5, 50, 170))
cutree(dend, h = c(20, 25.5, 50, 170))
library(microbenchmark)
## this shows how as.hclust is expensive - but still worth it if possible
microbenchmark(
cutree(hc, k = 2:4),
cutree(as.hclust(dend), k = 2:4),
cutree(dend, k = 2:4),
cutree(dend, k = 2:4, try_cutree_hclust = FALSE)
)
# the dendrogram is MUCH slower...
# Unit: microseconds
## expr min lq median uq max neval
## cutree(hc, k = 2:4) 91.270 96.589 99.3885 107.5075 338.758 100
## tree(as.hclust(dend),
## k = 2:4) 1701.629 1767.700 1854.4895 2029.1875 8736.591 100
## cutree(dend, k = 2:4) 1807.456 1869.887 1963.3960 2125.2155 5579.705 100
## cutree(dend, k = 2:4,
## try_cutree_hclust = FALSE) 8393.914 8570.852 8755.3490 9686.7930 14194.790 100
# and trying to "hclust" is not expensive (which is nice...)
microbenchmark(
cutree_unbranch_dend = cutree(unbranch_dend, k = 2:4),
cutree_unbranch_dend_not_trying_to_hclust =
cutree(unbranch_dend, k = 2:4, try_cutree_hclust = FALSE)
)
## Unit: milliseconds
## expr min lq median uq max neval
## cutree_unbranch_dend 7.309329 7.428314 7.494107 7.752234 17.59581 100
## cutree_unbranch_dend_not
## _trying_to_hclust 6.945375 7.079198 7.148629 7.577536 16.99780 100
## There were 50 or more warnings (use warnings() to see the first 50)
# notice that if cutree can't find clusters for the desired k/h, it will produce 0's instead!
# (It will produce a warning though...)
# This is a different behaviout than stats::cutree
# For example:
cutree(as.dendrogram(hclust(dist(c(1, 1, 1, 2, 2)))),
k = 5
)
}
}
\seealso{
\code{\link{hclust}}, \code{\link[stats]{cutree}},
\code{\link{cutree_1h.dendrogram}}, \code{\link{cutree_1k.dendrogram}},
}
\author{
\code{cutree.dendrogram} was written by Tal Galili.
\code{cutree.hclust} is redirecting the function
to \link[stats]{cutree} from base R.
}
|