File: cutree-methods.Rd

package info (click to toggle)
r-cran-dendextend 1.14.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,888 kB
  • sloc: sh: 13; makefile: 2
file content (194 lines) | stat: -rw-r--r-- 6,612 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/cutree.dendrogram.R
\name{cutree}
\alias{cutree}
\alias{cutree.default}
\alias{cutree.hclust}
\alias{cutree.phylo}
\alias{cutree.agnes}
\alias{cutree.diana}
\alias{cutree.dendrogram}
\title{Cut a Tree (Dendrogram/hclust/phylo) into Groups of Data}
\usage{
cutree(tree, k = NULL, h = NULL, ...)

\method{cutree}{default}(tree, k = NULL, h = NULL, ...)

\method{cutree}{hclust}(
  tree,
  k = NULL,
  h = NULL,
  use_labels_not_values = TRUE,
  order_clusters_as_data = TRUE,
  warn = dendextend_options("warn"),
  NA_to_0L = TRUE,
  ...
)

\method{cutree}{phylo}(tree, k = NULL, h = NULL, ...)

\method{cutree}{phylo}(tree, k = NULL, h = NULL, ...)

\method{cutree}{agnes}(tree, k = NULL, h = NULL, ...)

\method{cutree}{diana}(tree, k = NULL, h = NULL, ...)

\method{cutree}{dendrogram}(
  tree,
  k = NULL,
  h = NULL,
  dend_heights_per_k = NULL,
  use_labels_not_values = TRUE,
  order_clusters_as_data = TRUE,
  warn = dendextend_options("warn"),
  try_cutree_hclust = TRUE,
  NA_to_0L = TRUE,
  ...
)
}
\arguments{
\item{tree}{a dendrogram object}

\item{k}{numeric scalar (OR a vector) with the number of clusters
the tree should be cut into.}

\item{h}{numeric scalar (OR a vector) with a height where the tree
should be cut.}

\item{...}{(not currently in use)}

\item{use_labels_not_values}{logical, defaults to TRUE. If the actual labels of the
clusters do not matter - and we want to gain speed (say, 10 times faster) -
then use FALSE (gives the "leaves order" instead of their labels.).
This is passed to \code{cutree_1h.dendrogram}.}

\item{order_clusters_as_data}{logical, defaults to TRUE. There are two ways by which
to order the clusters: 1) By the order of the original data. 2) by the order of the
labels in the dendrogram. In order to be consistent with \link[stats]{cutree}, this is set
to TRUE.
This is passed to \code{cutree_1h.dendrogram}.}

\item{warn}{logical (default from dendextend_options("warn") is FALSE).
Set if warning are to be issued, it is safer to keep this at TRUE,
but for keeping the noise down, the default is FALSE.
Should the function send a warning in case the desried k is not available?}

\item{NA_to_0L}{logical. default is TRUE. When no clusters are possible,
Should the function return 0 (TRUE, default), or NA (when set to FALSE).}

\item{dend_heights_per_k}{a named vector that resulted from running.
\code{heights_per_k.dendrogram}. When running the function many times,
supplying this object will help improve the running time if using k!=NULL .}

\item{try_cutree_hclust}{logical. default is TRUE. Since cutree for hclust is
MUCH faster than for dendrogram - cutree.dendrogram will first try to change the
dendrogram into an hclust object. If it will fail (for example, with unbranched trees),
it will continue using the cutree.dendrogram function.
If try_cutree_hclust=FALSE, it will force to use cutree.dendrogram and not
cutree.hclust.}
}
\value{
If k or h are scalar - \code{cutree.dendrogram} returns an integer vector with group
memberships.
Otherwise a matrix with group memberships is returned where each column
corresponds to the elements of k or h, respectively
(which are also used as column names).

In case there exists no such k for which exists a relevant split of the
dendrogram, a warning is issued to the user, and NA is returned.
}
\description{
Cuts a dendrogram tree into several groups
by specifying the desired number of clusters k(s), or cut height(s).

For \code{hclust.dendrogram} -
In case there exists no such k for which exists a relevant split of the
dendrogram, a warning is issued to the user, and NA is returned.
}
\details{
At least one of k or h must be specified, k overrides h if both are given.

as opposed to \link[stats]{cutree} for hclust, \code{cutree.dendrogram} allows the
cutting of trees at a given height also for non-ultrametric trees
(ultrametric tree == a tree with monotone clustering heights).
}
\examples{

\dontrun{
hc <- hclust(dist(USArrests[c(1, 6, 13, 20, 23), ]), "ave")
dend <- as.dendrogram(hc)
unbranch_dend <- unbranch(dend, 2)

cutree(hc, k = 2:4) # on hclust
cutree(dend, k = 2:4) # on dendrogram

cutree(hc, k = 2) # on hclust
cutree(dend, k = 2) # on dendrogram

cutree(dend, h = c(20, 25.5, 50, 170))
cutree(hc, h = c(20, 25.5, 50, 170))

# the default (ordered by original data's order)
cutree(dend, k = 2:3, order_clusters_as_data = FALSE)
labels(dend)

# as.hclust(unbranch_dend) # ERROR - can not do this...
cutree(unbranch_dend, k = 2) # all NA's
cutree(unbranch_dend, k = 1:4)
cutree(unbranch_dend, h = c(20, 25.5, 50, 170))
cutree(dend, h = c(20, 25.5, 50, 170))


library(microbenchmark)
## this shows how as.hclust is expensive - but still worth it if possible
microbenchmark(
  cutree(hc, k = 2:4),
  cutree(as.hclust(dend), k = 2:4),
  cutree(dend, k = 2:4),
  cutree(dend, k = 2:4, try_cutree_hclust = FALSE)
)
# the dendrogram is MUCH slower...

# Unit: microseconds
##                       expr      min       lq    median        uq       max neval
##        cutree(hc, k = 2:4)   91.270   96.589   99.3885  107.5075   338.758   100
##    tree(as.hclust(dend),
## 			  k = 2:4)           1701.629 1767.700 1854.4895 2029.1875  8736.591   100
##      cutree(dend, k = 2:4) 1807.456 1869.887 1963.3960 2125.2155  5579.705   100
##  cutree(dend, k = 2:4,
## 	try_cutree_hclust = FALSE) 8393.914 8570.852 8755.3490 9686.7930 14194.790   100

# and trying to "hclust" is not expensive (which is nice...)
microbenchmark(
  cutree_unbranch_dend = cutree(unbranch_dend, k = 2:4),
  cutree_unbranch_dend_not_trying_to_hclust =
    cutree(unbranch_dend, k = 2:4, try_cutree_hclust = FALSE)
)


## Unit: milliseconds
##                   expr      min       lq   median       uq      max neval
## cutree_unbranch_dend       7.309329 7.428314 7.494107 7.752234 17.59581   100
## cutree_unbranch_dend_not
## _trying_to_hclust        6.945375 7.079198 7.148629 7.577536 16.99780   100
## There were 50 or more warnings (use warnings() to see the first 50)

# notice that if cutree can't find clusters for the desired k/h, it will produce 0's instead!
# (It will produce a warning though...)
# This is a different behaviout than stats::cutree
# For example:
cutree(as.dendrogram(hclust(dist(c(1, 1, 1, 2, 2)))),
  k = 5
)
}

}
\seealso{
\code{\link{hclust}}, \code{\link[stats]{cutree}},
\code{\link{cutree_1h.dendrogram}}, \code{\link{cutree_1k.dendrogram}},
}
\author{
\code{cutree.dendrogram} was written by Tal Galili.
\code{cutree.hclust} is redirecting the function
to \link[stats]{cutree} from base R.
}