1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
|
// BooPHF library
// intended to be a minimal perfect hash function with fast and low memory construction, at the cost of (slightly) higher bits/elem than other state of the art libraries once built.
// should work with arbitray large number of elements, based on a cascade of "collision-free" bit arrays
#pragma once
#include <stdio.h>
#include <climits>
#include <stdlib.h>
#include <iostream>
#include <math.h>
#include <array>
#include <unordered_map>
#include <vector>
#include <assert.h>
#include <sys/time.h>
#include <string.h>
#include <memory> // for make_shared
#include <unistd.h>
namespace boomphf {
inline u_int64_t printPt( pthread_t pt) {
unsigned char *ptc = (unsigned char*)(void*)(&pt);
u_int64_t res =0;
for (size_t i=0; i<sizeof(pt); i++) {
res+= (unsigned)(ptc[i]);
}
return res;
}
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark utils
////////////////////////////////////////////////////////////////
// iterator from disk file of u_int64_t with buffered read, todo template
template <typename basetype>
class bfile_iterator : public std::iterator<std::forward_iterator_tag, basetype>{
public:
bfile_iterator()
: _is(nullptr)
, _pos(0) ,_inbuff (0), _cptread(0)
{
_buffsize = 10000;
_buffer = (basetype *) malloc(_buffsize*sizeof(basetype));
}
bfile_iterator(const bfile_iterator& cr)
{
_buffsize = cr._buffsize;
_pos = cr._pos;
_is = cr._is;
_buffer = (basetype *) malloc(_buffsize*sizeof(basetype));
memcpy(_buffer,cr._buffer,_buffsize*sizeof(basetype) );
_inbuff = cr._inbuff;
_cptread = cr._cptread;
_elem = cr._elem;
}
bfile_iterator(FILE* is): _is(is) , _pos(0) ,_inbuff (0), _cptread(0)
{
//printf("bf it %p\n",_is);
_buffsize = 10000;
_buffer = (basetype *) malloc(_buffsize*sizeof(basetype));
int reso = fseek(_is,0,SEEK_SET);
(void)reso;
advance();
}
~bfile_iterator()
{
if(_buffer!=NULL)
free(_buffer);
}
basetype const& operator*() { return _elem; }
bfile_iterator& operator++()
{
advance();
return *this;
}
friend bool operator==(bfile_iterator const& lhs, bfile_iterator const& rhs)
{
if (!lhs._is || !rhs._is) { if (!lhs._is && !rhs._is) { return true; } else { return false; } }
assert(lhs._is == rhs._is);
return rhs._pos == lhs._pos;
}
friend bool operator!=(bfile_iterator const& lhs, bfile_iterator const& rhs) { return !(lhs == rhs); }
private:
void advance()
{
//printf("_cptread %i _inbuff %i \n",_cptread,_inbuff);
_pos++;
if(_cptread >= _inbuff)
{
int res = fread(_buffer,sizeof(basetype),_buffsize,_is);
//printf("read %i new elem last %llu %p\n",res,_buffer[res-1],_is);
_inbuff = res; _cptread = 0;
if(res == 0)
{
_is = nullptr;
_pos = 0;
return;
}
}
_elem = _buffer[_cptread];
_cptread ++;
}
basetype _elem;
FILE * _is;
unsigned long _pos;
basetype * _buffer; // for buffered read
int _inbuff, _cptread;
int _buffsize;
};
template <typename type_elem>
class file_binary{
public:
file_binary(const char* filename)
{
_is = fopen(filename, "rb");
if (!_is) {
throw std::invalid_argument("Error opening " + std::string(filename));
}
}
~file_binary()
{
fclose(_is);
}
bfile_iterator<type_elem> begin() const
{
return bfile_iterator<type_elem>(_is);
}
bfile_iterator<type_elem> end() const {return bfile_iterator<type_elem>(); }
size_t size () const { return 0; }//todo ?
private:
FILE * _is;
};
inline unsigned int popcount_32(unsigned int x)
{
unsigned int m1 = 0x55555555;
unsigned int m2 = 0x33333333;
unsigned int m4 = 0x0f0f0f0f;
unsigned int h01 = 0x01010101;
x -= (x >> 1) & m1; /* put count of each 2 bits into those 2 bits */
x = (x & m2) + ((x >> 2) & m2); /* put count of each 4 bits in */
x = (x + (x >> 4)) & m4; /* put count of each 8 bits in partie droite 4bit piece*/
return (x * h01) >> 24; /* returns left 8 bits of x + (x<<8) + ... */
}
inline unsigned int popcount_64(uint64_t x)
{
unsigned int low = x & 0xffffffff ;
unsigned int high = ( x >> 32LL) & 0xffffffff ;
return (popcount_32(low) + popcount_32(high));
}
///// progress bar
class Progress
{
public:
int timer_mode;
struct timeval timestamp;
double heure_debut, heure_actuelle ;
std::string message;
uint64_t done;
uint64_t todo;
int subdiv ; // progress printed every 1/subdiv of total to do
double partial;
int _nthreads;
std::vector<double > partial_threaded;
std::vector<uint64_t > done_threaded;
double steps ; //steps = todo/subidv
void init(uint64_t ntasks, const char * msg,int nthreads =1)
{
_nthreads = nthreads;
message = std::string(msg);
gettimeofday(×tamp, NULL);
heure_debut = timestamp.tv_sec +(timestamp.tv_usec/1000000.0);
//fprintf(stderr,"| %-*s |\n",98,msg);
todo= ntasks;
done = 0;
partial =0;
partial_threaded.resize(_nthreads);
done_threaded.resize(_nthreads);
for (int ii=0; ii<_nthreads;ii++) partial_threaded[ii]=0;
for (int ii=0; ii<_nthreads;ii++) done_threaded[ii]=0;
subdiv= 1000;
steps = (double)todo / (double)subdiv;
if(!timer_mode)
{
fprintf(stderr,"[");fflush(stderr);
}
}
void finish()
{
set(todo);
if(timer_mode)
fprintf(stderr,"\n");
else
fprintf(stderr,"]\n");
fflush(stderr);
todo= 0;
done = 0;
partial =0;
}
void finish_threaded()// called by only one of the threads
{
done = 0;
//double rem = 0;
for (int ii=0; ii<_nthreads;ii++) done += (done_threaded[ii] );
for (int ii=0; ii<_nthreads;ii++) partial += (partial_threaded[ii] );
finish();
}
void inc(uint64_t ntasks_done)
{
done += ntasks_done;
partial += ntasks_done;
while(partial >= steps)
{
if(timer_mode)
{
gettimeofday(×tamp, NULL);
heure_actuelle = timestamp.tv_sec +(timestamp.tv_usec/1000000.0);
double elapsed = heure_actuelle - heure_debut;
double speed = done / elapsed;
double rem = (todo-done) / speed;
if(done>todo) rem=0;
int min_e = (int)(elapsed / 60) ;
elapsed -= min_e*60;
int min_r = (int)(rem / 60) ;
rem -= min_r*60;
fprintf(stderr,"%c[%s] %-5.3g%% elapsed: %3i min %-2.0f sec remaining: %3i min %-2.0f sec",13,
message.c_str(),
100*(double)done/todo,
min_e,elapsed,min_r,rem);
}
else
{
fprintf(stderr,"-");fflush(stderr);
}
partial -= steps;
}
}
void inc(uint64_t ntasks_done, int tid) //threads collaborate to this same progress bar
{
partial_threaded[tid] += ntasks_done;
done_threaded[tid] += ntasks_done;
while(partial_threaded[tid] >= steps)
{
if(timer_mode)
{
struct timeval timet;
double now;
gettimeofday(&timet, NULL);
now = timet.tv_sec +(timet.tv_usec/1000000.0);
uint64_t total_done = 0;
for (int ii=0; ii<_nthreads;ii++) total_done += (done_threaded[ii] );
double elapsed = now - heure_debut;
double speed = total_done / elapsed;
double rem = (todo-total_done) / speed;
if(total_done > todo) rem =0;
int min_e = (int)(elapsed / 60) ;
elapsed -= min_e*60;
int min_r = (int)(rem / 60) ;
rem -= min_r*60;
fprintf(stderr,"%c[%s] %-5.3g%% elapsed: %3i min %-2.0f sec remaining: %3i min %-2.0f sec",13,
message.c_str(),
100*(double)total_done/todo,
min_e,elapsed,min_r,rem);
}
else
{
fprintf(stderr,"-");fflush(stderr);
}
partial_threaded[tid] -= steps;
}
}
void set(uint64_t ntasks_done)
{
if(ntasks_done > done)
inc(ntasks_done-done);
}
Progress () : timer_mode(0) {}
//include timer, to print ETA ?
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark hasher
////////////////////////////////////////////////////////////////
typedef std::array<uint64_t,10> hash_set_t;
typedef std::array<uint64_t,2> hash_pair_t;
template <typename Item> class HashFunctors
{
public:
/** Constructor.
* \param[in] nbFct : number of hash functions to be used
* \param[in] seed : some initialization code for defining the hash functions. */
HashFunctors ()
{
_nbFct = 7; // use 7 hash func
_user_seed = 0;
generate_hash_seed ();
}
//return one hash
uint64_t operator () (const Item& key, size_t idx) const { return hash64 (key, _seed_tab[idx]); }
uint64_t hashWithSeed(const Item& key, uint64_t seed) const { return hash64 (key, seed); }
//this one returns all the 7 hashes
//maybe use xorshift instead, for faster hash compute
hash_set_t operator () (const Item& key)
{
hash_set_t hset;
for(size_t ii=0;ii<10; ii++)
{
hset[ii] = hash64 (key, _seed_tab[ii]);
}
return hset;
}
private:
inline static uint64_t hash64 (Item key, uint64_t seed)
{
uint64_t hash = seed;
hash ^= (hash << 7) ^ key * (hash >> 3) ^ (~((hash << 11) + (key ^ (hash >> 5))));
hash = (~hash) + (hash << 21);
hash = hash ^ (hash >> 24);
hash = (hash + (hash << 3)) + (hash << 8);
hash = hash ^ (hash >> 14);
hash = (hash + (hash << 2)) + (hash << 4);
hash = hash ^ (hash >> 28);
hash = hash + (hash << 31);
return hash;
}
/* */
void generate_hash_seed ()
{
static const uint64_t rbase[MAXNBFUNC] =
{
0xAAAAAAAA55555555ULL, 0x33333333CCCCCCCCULL, 0x6666666699999999ULL, 0xB5B5B5B54B4B4B4BULL,
0xAA55AA5555335533ULL, 0x33CC33CCCC66CC66ULL, 0x6699669999B599B5ULL, 0xB54BB54B4BAA4BAAULL,
0xAA33AA3355CC55CCULL, 0x33663366CC99CC99ULL
};
for (size_t i=0; i<MAXNBFUNC; ++i) { _seed_tab[i] = rbase[i]; }
for (size_t i=0; i<MAXNBFUNC; ++i) { _seed_tab[i] = _seed_tab[i] * _seed_tab[(i+3) % MAXNBFUNC] + _user_seed ; }
}
size_t _nbFct;
static const size_t MAXNBFUNC = 10;
uint64_t _seed_tab[MAXNBFUNC];
uint64_t _user_seed;
};
/* alternative hash functor based on xorshift, taking a single hash functor as input.
we need this 2-functors scheme because HashFunctors won't work with unordered_map.
(rayan)
*/
// wrapper around HashFunctors to return only one value instead of 7
template <typename Item> class SingleHashFunctor
{
public:
uint64_t operator () (const Item& key, uint64_t seed=0xAAAAAAAA55555555ULL) const { return hashFunctors.hashWithSeed(key, seed); }
private:
HashFunctors<Item> hashFunctors;
};
template <typename Item, class SingleHasher_t> class XorshiftHashFunctors
{
/* Xorshift128*
Written in 2014 by Sebastiano Vigna (vigna@acm.org)
To the extent possible under law, the author has dedicated all copyright
and related and neighboring rights to this software to the public domain
worldwide. This software is distributed without any warranty.
See <http://creativecommons.org/publicdomain/zero/1.0/>. */
/* This is the fastest generator passing BigCrush without
systematic failures, but due to the relatively short period it is
acceptable only for applications with a mild amount of parallelism;
otherwise, use a xorshift1024* generator.
The state must be seeded so that it is not everywhere zero. If you have
a nonzero 64-bit seed, we suggest to pass it twice through
MurmurHash3's avalanching function. */
// uint64_t s[ 2 ];
uint64_t next(uint64_t * s) {
uint64_t s1 = s[ 0 ];
const uint64_t s0 = s[ 1 ];
s[ 0 ] = s0;
s1 ^= s1 << 23; // a
return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
}
public:
uint64_t h0(hash_pair_t & s, const Item& key )
{
s[0] = singleHasher (key, 0xAAAAAAAA55555555ULL);
return s[0];
}
uint64_t h1(hash_pair_t & s, const Item& key )
{
s[1] = singleHasher (key, 0x33333333CCCCCCCCULL);
return s[1];
}
//return next hash an update state s
uint64_t next(hash_pair_t & s ) {
uint64_t s1 = s[ 0 ];
const uint64_t s0 = s[ 1 ];
s[ 0 ] = s0;
s1 ^= s1 << 23; // a
return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
}
//this one returns all the hashes
hash_set_t operator () (const Item& key)
{
uint64_t s[ 2 ];
hash_set_t hset;
hset[0] = singleHasher (key, 0xAAAAAAAA55555555ULL);
hset[1] = singleHasher (key, 0x33333333CCCCCCCCULL);
s[0] = hset[0];
s[1] = hset[1];
for(size_t ii=2;ii< 10 /* it's much better have a constant here, for inlining; this loop is super performance critical*/; ii++)
{
hset[ii] = next(s);
}
return hset;
}
private:
SingleHasher_t singleHasher;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark iterators
////////////////////////////////////////////////////////////////
template <typename Iterator>
struct iter_range
{
iter_range(Iterator b, Iterator e)
: m_begin(b)
, m_end(e)
{}
Iterator begin() const
{ return m_begin; }
Iterator end() const
{ return m_end; }
Iterator m_begin, m_end;
};
template <typename Iterator>
iter_range<Iterator> range(Iterator begin, Iterator end)
{
return iter_range<Iterator>(begin, end);
}
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark BitVector
////////////////////////////////////////////////////////////////
class bitVector {
public:
bitVector() : _size(0)
{
_bitArray = nullptr;
}
bitVector(uint64_t n) : _size(n)
{
_nchar = (1ULL+n/64ULL);
_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
}
~bitVector()
{
if(_bitArray != nullptr)
free(_bitArray);
}
//copy constructor
bitVector(bitVector const &r)
{
_size = r._size;
_nchar = r._nchar;
_ranks = r._ranks;
_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
memcpy(_bitArray, r._bitArray, _nchar*sizeof(uint64_t) );
}
// Copy assignment operator
bitVector &operator=(bitVector const &r)
{
if (&r != this)
{
_size = r._size;
_nchar = r._nchar;
_ranks = r._ranks;
if(_bitArray != nullptr)
free(_bitArray);
_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
memcpy(_bitArray, r._bitArray, _nchar*sizeof(uint64_t) );
}
return *this;
}
// Move assignment operator
bitVector &operator=(bitVector &&r)
{
//printf("bitVector move assignment \n");
if (&r != this)
{
if(_bitArray != nullptr)
free(_bitArray);
_size = std::move (r._size);
_nchar = std::move (r._nchar);
_ranks = std::move (r._ranks);
_bitArray = r._bitArray;
r._bitArray = nullptr;
}
return *this;
}
// Move constructor
bitVector(bitVector &&r) : _bitArray ( nullptr),_size(0)
{
*this = std::move(r);
}
void resize(uint64_t newsize)
{
//printf("bitvector resize from %llu bits to %llu \n",_size,newsize);
_nchar = (1ULL+newsize/64ULL);
_bitArray = (uint64_t *) realloc(_bitArray,_nchar*sizeof(uint64_t));
_size = newsize;
}
size_t size() const
{
return _size;
}
uint64_t bitSize() const {return (_nchar*64ULL + _ranks.capacity()*64ULL );}
//clear whole array
void clear()
{
memset(_bitArray,0,_nchar*sizeof(uint64_t));
}
//clear collisions in interval, only works with start and size multiple of 64
void clearCollisions(uint64_t start, size_t size, bitVector * cc)
{
assert( (start & 63) ==0);
assert( (size & 63) ==0);
uint64_t ids = (start/64ULL);
for(uint64_t ii =0; ii< (size/64ULL); ii++ )
{
_bitArray[ids+ii] = _bitArray[ids+ii] & (~ (cc->get64(ii)) );
}
cc->clear();
}
//clear interval, only works with start and size multiple of 64
void clear(uint64_t start, size_t size)
{
assert( (start & 63) ==0);
assert( (size & 63) ==0);
memset(_bitArray + (start/64ULL),0,(size/64ULL)*sizeof(uint64_t));
}
//for debug purposes
void print() const
{
printf("bit array of size %llu: \n", static_cast<unsigned long long>(_size));
for(uint64_t ii = 0; ii< _size; ii++)
{
if(ii%10==0)
printf(" (%llu) ", static_cast<unsigned long long>(ii));
int val = (_bitArray[ii >> 6] >> (ii & 63 ) ) & 1;
printf("%i",val);
}
printf("\n");
printf("rank array : size %llu \n", static_cast<unsigned long long>(_ranks.size()));
for (uint64_t ii = 0; ii< _ranks.size(); ii++)
{
printf("%llu : %lli, ",static_cast<unsigned long long>(ii), static_cast<long long int>(_ranks[ii]));
}
printf("\n");
}
//return value at pos
uint64_t operator[](uint64_t pos) const
{
//unsigned char * _bitArray8 = (unsigned char *) _bitArray;
//return (_bitArray8[pos >> 3ULL] >> (pos & 7 ) ) & 1;
return (_bitArray[pos >> 6ULL] >> (pos & 63 ) ) & 1;
}
//atomically return old val and set to 1
uint64_t atomic_test_and_set(uint64_t pos)
{
uint64_t oldval = __sync_fetch_and_or (_bitArray + (pos >> 6), (uint64_t) (1ULL << (pos & 63)) );
return ( oldval >> (pos & 63 ) ) & 1;
}
uint64_t get(uint64_t pos) const
{
return (*this)[pos];
}
uint64_t get64(uint64_t cell64) const
{
return _bitArray[cell64];
}
//set bit pos to 1
void set(uint64_t pos)
{
assert(pos<_size);
//_bitArray [pos >> 6] |= (1ULL << (pos & 63) ) ;
__sync_fetch_and_or (_bitArray + (pos >> 6ULL), (1ULL << (pos & 63)) );
}
//set bit pos to 0
void reset(uint64_t pos)
{
//_bitArray [pos >> 6] &= ~(1ULL << (pos & 63) ) ;
__sync_fetch_and_and (_bitArray + (pos >> 6ULL), ~(1ULL << (pos & 63) ));
}
//return value of last rank
// add offset to all ranks computed
uint64_t build_ranks(uint64_t offset =0)
{
_ranks.reserve(2+ _size/_nb_bits_per_rank_sample);
uint64_t curent_rank = offset;
for (size_t ii = 0; ii < _nchar; ii++) {
if (((ii*64) % _nb_bits_per_rank_sample) == 0) {
_ranks.push_back(curent_rank);
}
curent_rank += popcount_64(_bitArray[ii]);
}
return curent_rank;
}
uint64_t rank(uint64_t pos) const
{
uint64_t word_idx = pos / 64ULL;
uint64_t word_offset = pos % 64;
uint64_t block = pos / _nb_bits_per_rank_sample;
uint64_t r = _ranks[block];
for (uint64_t w = block * _nb_bits_per_rank_sample / 64; w < word_idx; ++w) {
r += popcount_64( _bitArray[w] );
}
uint64_t mask = (uint64_t(1) << word_offset ) - 1;
r += popcount_64( _bitArray[word_idx] & mask);
return r;
}
void save(std::ostream& os) const
{
os.write(reinterpret_cast<char const*>(&_size), sizeof(_size));
os.write(reinterpret_cast<char const*>(&_nchar), sizeof(_nchar));
os.write(reinterpret_cast<char const*>(_bitArray), (std::streamsize)(sizeof(uint64_t) * _nchar));
size_t sizer = _ranks.size();
os.write(reinterpret_cast<char const*>(&sizer), sizeof(size_t));
os.write(reinterpret_cast<char const*>(_ranks.data()), (std::streamsize)(sizeof(_ranks[0]) * _ranks.size()));
}
void load(std::istream& is)
{
is.read(reinterpret_cast<char*>(&_size), sizeof(_size));
is.read(reinterpret_cast<char*>(&_nchar), sizeof(_nchar));
this->resize(_size);
is.read(reinterpret_cast<char *>(_bitArray), (std::streamsize)(sizeof(uint64_t) * _nchar));
size_t sizer;
is.read(reinterpret_cast<char *>(&sizer), sizeof(size_t));
_ranks.resize(sizer);
is.read(reinterpret_cast<char*>(_ranks.data()), (std::streamsize)(sizeof(_ranks[0]) * _ranks.size()));
}
protected:
uint64_t* _bitArray;
//uint64_t* _bitArray;
uint64_t _size;
uint64_t _nchar;
// epsilon = 64 / _nb_bits_per_rank_sample bits
// additional size for rank is epsilon * _size
static const uint64_t _nb_bits_per_rank_sample = 512; //512 seems ok
std::vector<uint64_t> _ranks;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark level
////////////////////////////////////////////////////////////////
static inline uint64_t fastrange64(uint64_t word, uint64_t p) {
//return word % p;
return (uint64_t)(((__uint128_t)word * (__uint128_t)p) >> 64);
}
class level{
public:
level(){ }
~level() {
}
uint64_t get(uint64_t hash_raw)
{
// uint64_t hashi = hash_raw % hash_domain; //
//uint64_t hashi = (uint64_t)( ((__uint128_t) hash_raw * (__uint128_t) hash_domain) >> 64ULL);
uint64_t hashi = fastrange64(hash_raw,hash_domain);
return bitset.get(hashi);
}
uint64_t idx_begin;
uint64_t hash_domain;
bitVector bitset;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark mphf
////////////////////////////////////////////////////////////////
#define NBBUFF 10000
//#define NBBUFF 2
template<typename Range,typename Iterator>
struct thread_args
{
void * boophf;
Range const * range;
std::shared_ptr<void> it_p; /* used to be "Iterator it" but because of fastmode, iterator is polymorphic; TODO: think about whether it should be a unique_ptr actually */
std::shared_ptr<void> until_p; /* to cache the "until" variable */
int level;
};
//forward declaration
template <typename elem_t, typename Hasher_t, typename Range, typename it_type>
void * thread_processLevel(void * args);
/* Hasher_t returns a single hash when operator()(elem_t key) is called.
if used with XorshiftHashFunctors, it must have the following operator: operator()(elem_t key, uint64_t seed) */
template <typename elem_t, typename Hasher_t>
class mphf {
/* this mechanisms gets P hashes out of Hasher_t */
typedef XorshiftHashFunctors<elem_t,Hasher_t> MultiHasher_t ;
// typedef HashFunctors<elem_t> MultiHasher_t; // original code (but only works for int64 keys) (seems to be as fast as the current xorshift)
//typedef IndepHashFunctors<elem_t,Hasher_t> MultiHasher_t; //faster than xorshift
public:
mphf() : _built(false)
{}
~mphf()
{
}
// allow perc_elem_loaded elements to be loaded in ram for faster construction (default 3%), set to 0 to desactivate
template <typename Range>
mphf( size_t n, Range const& input_range,int num_thread = 1, double gamma = 2.0 , bool writeEach = true, bool progress =true, float perc_elem_loaded = 0.03) :
_gamma(gamma), _hash_domain(size_t(ceil(double(n) * gamma))), _nelem(n), _num_thread(num_thread), _percent_elem_loaded_for_fastMode (perc_elem_loaded), _withprogress(progress)
{
if(n ==0) return;
_fastmode = false;
if(_percent_elem_loaded_for_fastMode > 0.0 )
_fastmode =true;
if(writeEach)
{
_writeEachLevel =true;
_fastmode = false;
}
else
{
_writeEachLevel = false;
}
setup();
if(_withprogress)
{
_progressBar.timer_mode=1;
double total_raw = _nb_levels;
double sum_geom_read = ( 1.0 / (1.0 - _proba_collision));
double total_writeEach = sum_geom_read + 1.0;
double total_fastmode_ram = (_fastModeLevel+1) + ( pow(_proba_collision,_fastModeLevel)) * (_nb_levels-(_fastModeLevel+1)) ;
printf("for info, total work write each : %.3f total work inram from level %i : %.3f total work raw : %.3f \n",total_writeEach,_fastModeLevel,total_fastmode_ram,total_raw);
if(writeEach)
{
_progressBar.init(_nelem * total_writeEach,"Building BooPHF",num_thread);
}
else if(_fastmode)
_progressBar.init( _nelem * total_fastmode_ram ,"Building BooPHF",num_thread);
else
_progressBar.init( _nelem * _nb_levels ,"Building BooPHF",num_thread);
}
uint64_t offset = 0;
for(int ii = 0; ii< _nb_levels; ii++)
{
_tempBitset = new bitVector(_levels[ii].hash_domain); // temp collision bitarray for this level
processLevel(input_range,ii);
_levels[ii].bitset.clearCollisions(0 , _levels[ii].hash_domain , _tempBitset);
offset = _levels[ii].bitset.build_ranks(offset);
delete _tempBitset;
}
if(_withprogress)
_progressBar.finish_threaded();
_lastbitsetrank = offset ;
//printf("used temp ram for construction : %lli MB \n",setLevelFastmode.capacity()* sizeof(elem_t) /1024ULL/1024ULL);
std::vector<elem_t>().swap(setLevelFastmode); // clear setLevelFastmode reallocating
pthread_mutex_destroy(&_mutex);
_built = true;
}
uint64_t lookup(elem_t elem)
{
if(! _built) return ULLONG_MAX;
//auto hashes = _hasher(elem);
uint64_t non_minimal_hp,minimal_hp;
hash_pair_t bbhash{}; int level;
uint64_t level_hash = getLevel(bbhash,elem,&level);
if( level == (_nb_levels-1))
{
auto in_final_map = _final_hash.find (elem);
if ( in_final_map == _final_hash.end() )
{
//elem was not in orignal set of keys
return ULLONG_MAX; // means elem not in set
}
else
{
minimal_hp = in_final_map->second + _lastbitsetrank;
//printf("lookup %llu level %i --> %llu \n",elem,level,minimal_hp);
return minimal_hp;
}
// minimal_hp = _final_hash[elem] + _lastbitsetrank;
// return minimal_hp;
}
else
{
//non_minimal_hp = level_hash % _levels[level].hash_domain; // in fact non minimal hp would be + _levels[level]->idx_begin
non_minimal_hp = fastrange64(level_hash,_levels[level].hash_domain);
}
minimal_hp = _levels[level].bitset.rank(non_minimal_hp );
// printf("lookup %llu level %i --> %llu \n",elem,level,minimal_hp);
return minimal_hp;
}
uint64_t nbKeys() const
{
return _nelem;
}
uint64_t totalBitSize()
{
uint64_t totalsizeBitset = 0;
for(int ii=0; ii<_nb_levels; ii++)
{
totalsizeBitset += _levels[ii].bitset.bitSize();
}
uint64_t totalsize = totalsizeBitset + _final_hash.size()*42*8 ; // unordered map takes approx 42B per elem [personal test] (42B with uint64_t key, would be larger for other type of elem)
printf("Bitarray %12llu bits (%.2f %%) (array + ranks )\n",
totalsizeBitset, 100*(float)totalsizeBitset/totalsize);
printf("final hash %12lu bits (%.2f %%) (nb in final hash %lu)\n",
_final_hash.size()*42*8, 100*(float)(_final_hash.size()*42*8)/totalsize,
_final_hash.size() );
return totalsize;
}
template <typename Iterator> //typename Range,
void pthread_processLevel( std::vector<elem_t> & buffer , std::shared_ptr<Iterator> shared_it, std::shared_ptr<Iterator> until_p, int i)
{
uint64_t nb_done =0;
int tid = __sync_fetch_and_add (&_nb_living, 1);
auto until = *until_p;
uint64_t inbuff =0;
uint64_t writebuff =0;
std::vector< elem_t > & myWriteBuff = bufferperThread[tid];
for (bool isRunning=true; isRunning ; )
{
//safely copy n items into buffer
pthread_mutex_lock(&_mutex);
for(; inbuff<NBBUFF && (*shared_it)!=until; ++(*shared_it))
{
buffer[inbuff]= *(*shared_it); inbuff++;
}
if((*shared_it)==until) isRunning =false;
pthread_mutex_unlock(&_mutex);
//do work on the n elems of the buffer
// printf("filling input buff \n");
for(uint64_t ii=0; ii<inbuff ; ii++)
{
elem_t val = buffer[ii];
//printf("processing %llu level %i\n",val, i);
//auto hashes = _hasher(val);
hash_pair_t bbhash{}; int level;
uint64_t level_hash;
if(_writeEachLevel)
getLevel(bbhash,val,&level, i,i-1);
else
getLevel(bbhash,val,&level, i);
//uint64_t level_hash = getLevel(bbhash,val,&level, i);
//__sync_fetch_and_add(& _cptTotalProcessed,1);
if(level == i) //insert into lvl i
{
// __sync_fetch_and_add(& _cptLevel,1);
if(_fastmode && i == _fastModeLevel)
{
uint64_t idxl2 = __sync_fetch_and_add(& _idxLevelsetLevelFastmode,1);
//si depasse taille attendue pour setLevelFastmode, fall back sur slow mode mais devrait pas arriver si hash ok et proba avec nous
if(idxl2>= setLevelFastmode.size())
_fastmode = false;
else
setLevelFastmode[idxl2] = val; // create set for fast mode
}
//insert to level i+1 : either next level of the cascade or final hash if last level reached
if(i == _nb_levels-1) //stop cascade here, insert into exact hash
{
uint64_t hashidx = __sync_fetch_and_add (& _hashidx, 1);
pthread_mutex_lock(&_mutex); //see later if possible to avoid this, mais pas bcp item vont la
// calc rank de fin precedent level qq part, puis init hashidx avec ce rank, direct minimal, pas besoin inser ds bitset et rank
_final_hash[val] = hashidx;
pthread_mutex_unlock(&_mutex);
}
else
{
//ils ont reach ce level
//insert elem into curr level on disk --> sera utilise au level+1 , (mais encore besoin filtre)
if(_writeEachLevel && i > 0 && i < _nb_levels -1)
{
if(writebuff>=NBBUFF)
{
//flush buffer
flockfile(_currlevelFile);
fwrite(myWriteBuff.data(),sizeof(elem_t),writebuff,_currlevelFile);
funlockfile(_currlevelFile);
writebuff = 0;
}
myWriteBuff[writebuff++] = val;
}
//computes next hash
if ( level == 0)
level_hash = _hasher.h0(bbhash,val);
else if ( level == 1)
level_hash = _hasher.h1(bbhash,val);
else
{
level_hash = _hasher.next(bbhash);
}
insertIntoLevel(level_hash,i); //should be safe
}
}
nb_done++;
if((nb_done&1023) ==0 && _withprogress) {_progressBar.inc(nb_done,tid);nb_done=0; }
}
inbuff = 0;
}
if(_writeEachLevel && writebuff>0)
{
//flush buffer
flockfile(_currlevelFile);
fwrite(myWriteBuff.data(),sizeof(elem_t),writebuff,_currlevelFile);
funlockfile(_currlevelFile);
writebuff = 0;
}
}
void save(std::ostream& os) const
{
os.write(reinterpret_cast<char const*>(&_gamma), sizeof(_gamma));
os.write(reinterpret_cast<char const*>(&_nb_levels), sizeof(_nb_levels));
os.write(reinterpret_cast<char const*>(&_lastbitsetrank), sizeof(_lastbitsetrank));
os.write(reinterpret_cast<char const*>(&_nelem), sizeof(_nelem));
for(int ii=0; ii<_nb_levels; ii++)
{
_levels[ii].bitset.save(os);
}
//save final hash
size_t final_hash_size = _final_hash.size();
os.write(reinterpret_cast<char const*>(&final_hash_size), sizeof(size_t));
// typename std::unordered_map<elem_t,uint64_t,Hasher_t>::iterator
for (auto it = _final_hash.begin(); it != _final_hash.end(); ++it )
{
os.write(reinterpret_cast<char const*>(&(it->first)), sizeof(elem_t));
os.write(reinterpret_cast<char const*>(&(it->second)), sizeof(uint64_t));
}
}
void load(std::istream& is)
{
is.read(reinterpret_cast<char*>(&_gamma), sizeof(_gamma));
is.read(reinterpret_cast<char*>(&_nb_levels), sizeof(_nb_levels));
is.read(reinterpret_cast<char*>(&_lastbitsetrank), sizeof(_lastbitsetrank));
is.read(reinterpret_cast<char*>(&_nelem), sizeof(_nelem));
_levels.resize(_nb_levels);
for(int ii=0; ii<_nb_levels; ii++)
{
//_levels[ii].bitset = new bitVector();
_levels[ii].bitset.load(is);
}
//mini setup, recompute size of each level
_proba_collision = 1.0 - pow(((_gamma*(double)_nelem -1 ) / (_gamma*(double)_nelem)),_nelem-1);
uint64_t previous_idx =0;
_hash_domain = (size_t) (ceil(double(_nelem) * _gamma)) ;
for(int ii=0; ii<_nb_levels; ii++)
{
//_levels[ii] = new level();
_levels[ii].idx_begin = previous_idx;
_levels[ii].hash_domain = (( (uint64_t) (_hash_domain * pow(_proba_collision,ii)) + 63) / 64 ) * 64;
if(_levels[ii].hash_domain == 0 )
_levels[ii].hash_domain = 64 ;
previous_idx += _levels[ii].hash_domain;
}
//restore final hash
_final_hash.clear();
size_t final_hash_size ;
is.read(reinterpret_cast<char *>(&final_hash_size), sizeof(size_t));
for(unsigned int ii=0; ii<final_hash_size; ii++)
{
elem_t key;
uint64_t value;
is.read(reinterpret_cast<char *>(&key), sizeof(elem_t));
is.read(reinterpret_cast<char *>(&value), sizeof(uint64_t));
_final_hash[key] = value;
}
_built = true;
}
private :
void setup()
{
pthread_mutex_init(&_mutex, NULL);
_pid = getpid() + printPt(pthread_self()) ;// + pthread_self();
//printf("pt self %llu pid %i \n",printPt(pthread_self()),_pid);
_cptTotalProcessed=0;
if(_fastmode)
{
setLevelFastmode.resize(_percent_elem_loaded_for_fastMode * (double)_nelem );
}
bufferperThread.resize(_num_thread);
if(_writeEachLevel)
{
for(int ii=0; ii<_num_thread; ii++)
{
bufferperThread[ii].resize(NBBUFF);
}
}
_proba_collision = 1.0 - pow(((_gamma*(double)_nelem -1 ) / (_gamma*(double)_nelem)),_nelem-1);
//double sum_geom =_gamma * ( 1.0 + _proba_collision / (1.0 - _proba_collision));
//printf("proba collision %f sum_geom %f \n",_proba_collision,sum_geom);
_nb_levels = 25;
_levels.resize(_nb_levels);
//build levels
uint64_t previous_idx =0;
for(int ii=0; ii<_nb_levels; ii++)
{
_levels[ii].idx_begin = previous_idx;
// round size to nearest superior multiple of 64, makes it easier to clear a level
_levels[ii].hash_domain = (( (uint64_t) (_hash_domain * pow(_proba_collision,ii)) + 63) / 64 ) * 64;
if(_levels[ii].hash_domain == 0 ) _levels[ii].hash_domain = 64 ;
previous_idx += _levels[ii].hash_domain;
//printf("build level %i bit array : start %12llu, size %12llu ",ii,_levels[ii]->idx_begin,_levels[ii]->hash_domain );
//printf(" expected elems : %.2f %% total \n",100.0*pow(_proba_collision,ii));
}
for(int ii=0; ii<_nb_levels; ii++)
{
if(pow(_proba_collision,ii) < _percent_elem_loaded_for_fastMode)
{
_fastModeLevel = ii;
//printf("fast mode level : %i \n",ii);
break;
}
}
}
//compute level and returns hash of last level reached
uint64_t getLevel(hash_pair_t & bbhash, elem_t val,int * res_level, int maxlevel = 100, int minlevel =0)
//uint64_t getLevel(hash_pair_t & bbhash, elem_t val,int * res_level, int maxlevel = 100, int minlevel =0)
{
int level = 0;
uint64_t hash_raw=0;
for (int ii = 0; ii<(_nb_levels-1) && ii < maxlevel ; ii++ )
{
//calc le hash suivant
if ( ii == 0)
hash_raw = _hasher.h0(bbhash,val);
else if ( ii == 1)
hash_raw = _hasher.h1(bbhash,val);
else
{
hash_raw = _hasher.next(bbhash);
}
if( ii >= minlevel && _levels[ii].get(hash_raw) ) //
//if( _levels[ii].get(hash_raw) ) //
{
break;
}
level++;
}
*res_level = level;
return hash_raw;
}
//insert into bitarray
void insertIntoLevel(uint64_t level_hash, int i)
{
// uint64_t hashl = level_hash % _levels[i].hash_domain;
uint64_t hashl = fastrange64( level_hash,_levels[i].hash_domain);
if( _levels[i].bitset.atomic_test_and_set(hashl) )
{
_tempBitset->atomic_test_and_set(hashl);
}
}
//loop to insert into level i
template <typename Range>
void processLevel(Range const& input_range,int i)
{
////alloc the bitset for this level
_levels[i].bitset = bitVector(_levels[i].hash_domain); ;
//printf("---process level %i wr %i fast %i ---\n",i,_writeEachLevel,_fastmode);
char fname_old[1000];
sprintf(fname_old,"temp_p%i_level_%i",_pid,i-2);
char fname_curr[1000];
sprintf(fname_curr,"temp_p%i_level_%i",_pid,i);
char fname_prev[1000];
sprintf(fname_prev,"temp_p%i_level_%i",_pid,i-1);
if(_writeEachLevel)
{
//file management :
if(i>2) //delete previous file
{
unlink(fname_old);
}
if(i< _nb_levels-1 && i > 0 ) //create curr file
{
_currlevelFile = fopen(fname_curr,"w");
}
}
_cptLevel = 0;
_hashidx = 0;
_idxLevelsetLevelFastmode =0;
_nb_living =0;
//create threads
pthread_t *tab_threads= new pthread_t [_num_thread];
typedef decltype(input_range.begin()) it_type;
thread_args<Range, it_type> t_arg; // meme arg pour tous
t_arg.boophf = this;
t_arg.range = &input_range;
t_arg.it_p = std::static_pointer_cast<void>(std::make_shared<it_type>(input_range.begin()));
t_arg.until_p = std::static_pointer_cast<void>(std::make_shared<it_type>(input_range.end()));
t_arg.level = i;
if(_writeEachLevel && (i > 1))
{
auto data_iterator_level = file_binary<elem_t>(fname_prev);
typedef decltype(data_iterator_level.begin()) disklevel_it_type;
//data_iterator_level.begin();
t_arg.it_p = std::static_pointer_cast<void>(std::make_shared<disklevel_it_type>(data_iterator_level.begin()));
t_arg.until_p = std::static_pointer_cast<void>(std::make_shared<disklevel_it_type>(data_iterator_level.end()));
for(int ii=0;ii<_num_thread;ii++)
pthread_create (&tab_threads[ii], NULL, thread_processLevel<elem_t, Hasher_t, Range, disklevel_it_type>, &t_arg); //&t_arg[ii]
//must join here before the block is closed and file_binary is destroyed (and closes the file)
for(int ii=0;ii<_num_thread;ii++)
{
pthread_join(tab_threads[ii], NULL);
}
}
else
{
if(_fastmode && i >= (_fastModeLevel+1))
{
/* we'd like to do t_arg.it = data_iterator.begin() but types are different;
so, casting to (void*) because of that; and we remember the type in the template */
typedef decltype(setLevelFastmode.begin()) fastmode_it_type;
t_arg.it_p = std::static_pointer_cast<void>(std::make_shared<fastmode_it_type>(setLevelFastmode.begin()));
t_arg.until_p = std::static_pointer_cast<void>(std::make_shared<fastmode_it_type>(setLevelFastmode.end()));
/* we'd like to do t_arg.it = data_iterator.begin() but types are different;
so, casting to (void*) because of that; and we remember the type in the template */
for(int ii=0;ii<_num_thread;ii++)
pthread_create (&tab_threads[ii], NULL, thread_processLevel<elem_t, Hasher_t, Range, fastmode_it_type>, &t_arg); //&t_arg[ii]
}
else
{
for(int ii=0;ii<_num_thread;ii++)
pthread_create (&tab_threads[ii], NULL, thread_processLevel<elem_t, Hasher_t, Range, decltype(input_range.begin())>, &t_arg); //&t_arg[ii]
}
//joining
for(int ii=0;ii<_num_thread;ii++)
{
pthread_join(tab_threads[ii], NULL);
}
}
//printf("\ngoing to level %i : %llu elems %.2f %% expected : %.2f %% \n",i,_cptLevel,100.0* _cptLevel/(float)_nelem,100.0* pow(_proba_collision,i) );
//printf("\ncpt total processed %llu \n",_cptTotalProcessed);
if(_fastmode && i == _fastModeLevel) //shrink to actual number of elements in set
{
//printf("\nresize setLevelFastmode to %lli \n",_idxLevelsetLevelFastmode);
setLevelFastmode.resize(_idxLevelsetLevelFastmode);
}
delete [] tab_threads;
if(_writeEachLevel)
{
if(i< _nb_levels-1 && i>0)
{
fflush(_currlevelFile);
fclose(_currlevelFile);
}
if(i== _nb_levels- 1) //delete last file
{
unlink(fname_prev);
}
}
}
private:
//level ** _levels;
std::vector<level> _levels;
int _nb_levels;
MultiHasher_t _hasher;
bitVector * _tempBitset;
double _gamma;
uint64_t _hash_domain;
uint64_t _nelem;
std::unordered_map<elem_t,uint64_t,Hasher_t> _final_hash;
Progress _progressBar;
int _nb_living;
int _num_thread;
uint64_t _hashidx;
double _proba_collision;
uint64_t _lastbitsetrank;
uint64_t _idxLevelsetLevelFastmode;
uint64_t _cptLevel;
uint64_t _cptTotalProcessed;
// fast build mode , requires that _percent_elem_loaded_for_fastMode % elems are loaded in ram
float _percent_elem_loaded_for_fastMode ;
bool _fastmode;
std::vector< elem_t > setLevelFastmode;
// std::vector< elem_t > setLevelFastmode_next; // todo shrinker le set e nram a chaque niveau ?
std::vector< std::vector< elem_t > > bufferperThread;
int _fastModeLevel;
bool _withprogress;
bool _built;
bool _writeEachLevel;
FILE * _currlevelFile;
int _pid;
public:
pthread_mutex_t _mutex;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark threading
////////////////////////////////////////////////////////////////
template <typename elem_t, typename Hasher_t, typename Range, typename it_type>
void * thread_processLevel(void * args)
{
if(args ==NULL) return NULL;
thread_args<Range,it_type> *targ = (thread_args<Range,it_type>*) args;
mphf<elem_t, Hasher_t> * obw = (mphf<elem_t, Hasher_t > *) targ->boophf;
int level = targ->level;
std::vector<elem_t> buffer;
buffer.resize(NBBUFF);
pthread_mutex_t * mutex = & obw->_mutex;
pthread_mutex_lock(mutex); // from comment above: "//get starting iterator for this thread, must be protected (must not be currently used by other thread to copy elems in buff)"
std::shared_ptr<it_type> startit = std::static_pointer_cast<it_type>(targ->it_p);
std::shared_ptr<it_type> until_p = std::static_pointer_cast<it_type>(targ->until_p);
pthread_mutex_unlock(mutex);
obw->pthread_processLevel(buffer, startit, until_p, level);
return NULL;
}
}
|