File: BooPHF.hpp

package info (click to toggle)
rapmap 0.15.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,228 kB
  • sloc: cpp: 48,810; ansic: 4,686; sh: 215; python: 82; makefile: 15
file content (1566 lines) | stat: -rw-r--r-- 41,872 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
// BooPHF library
// intended to be a minimal perfect hash function with fast and low memory construction, at the cost of (slightly) higher bits/elem than other state of the art libraries once built.
// should work with arbitray large number of elements, based on a cascade of  "collision-free" bit arrays

#pragma once
#include <stdio.h>
#include <climits>
#include <stdlib.h>
#include <iostream>
#include <math.h>

#include <array>
#include <unordered_map>
#include <vector>
#include <assert.h>
#include <sys/time.h>
#include <string.h>
#include <memory> // for make_shared
#include <unistd.h>



namespace boomphf {

	
	inline u_int64_t printPt( pthread_t pt) {
	  unsigned char *ptc = (unsigned char*)(void*)(&pt);
		u_int64_t res =0;
	  for (size_t i=0; i<sizeof(pt); i++) {
		  res+= (unsigned)(ptc[i]);
	  }
		return res;
	}
	
	
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark utils
////////////////////////////////////////////////////////////////

	
	// iterator from disk file of u_int64_t with buffered read,   todo template
	template <typename basetype>
	class bfile_iterator : public std::iterator<std::forward_iterator_tag, basetype>{
	public:
		
		bfile_iterator()
		: _is(nullptr)
		, _pos(0) ,_inbuff (0), _cptread(0)
		{
			_buffsize = 10000;
			_buffer = (basetype *) malloc(_buffsize*sizeof(basetype));
		}
		
		bfile_iterator(const bfile_iterator& cr)
		{
			_buffsize = cr._buffsize;
			_pos = cr._pos;
			_is = cr._is;
			_buffer = (basetype *) malloc(_buffsize*sizeof(basetype));
			 memcpy(_buffer,cr._buffer,_buffsize*sizeof(basetype) );
			_inbuff = cr._inbuff;
			_cptread = cr._cptread;
			_elem = cr._elem;
		}
		
		bfile_iterator(FILE* is): _is(is) , _pos(0) ,_inbuff (0), _cptread(0)
		{
			//printf("bf it %p\n",_is);
			_buffsize = 10000;
			_buffer = (basetype *) malloc(_buffsize*sizeof(basetype));
			int reso = fseek(_is,0,SEEK_SET);
      (void)reso;
			advance();
		}
		
		~bfile_iterator()
		{
			if(_buffer!=NULL)
				free(_buffer);
		}
		
		
		basetype const& operator*()  {  return _elem;  }
		
		bfile_iterator& operator++()
		{
			advance();
			return *this;
		}
		
		friend bool operator==(bfile_iterator const& lhs, bfile_iterator const& rhs)
		{
			if (!lhs._is || !rhs._is)  {  if (!lhs._is && !rhs._is) {  return true; } else {  return false;  } }
			assert(lhs._is == rhs._is);
			return rhs._pos == lhs._pos;
		}
		
		friend bool operator!=(bfile_iterator const& lhs, bfile_iterator const& rhs)  {  return !(lhs == rhs);  }
	private:
		void advance()
		{
			
			//printf("_cptread %i _inbuff %i \n",_cptread,_inbuff);
			
			_pos++;
			
			if(_cptread >= _inbuff)
			{

				int res = fread(_buffer,sizeof(basetype),_buffsize,_is);

				//printf("read %i new elem last %llu  %p\n",res,_buffer[res-1],_is);
				_inbuff = res; _cptread = 0;
				
				if(res == 0)
				{
					_is = nullptr;
					_pos = 0;
					return;
				}
			}
			
			_elem = _buffer[_cptread];
			_cptread ++;
		}
		basetype _elem;
		FILE * _is;
		unsigned long _pos;
		
		basetype * _buffer; // for buffered read
		int _inbuff, _cptread;
		int _buffsize;
	};
	
	
	template <typename type_elem>
	class file_binary{
	public:
		
		file_binary(const char* filename)
		{
			_is = fopen(filename, "rb");

			if (!_is) {
				throw std::invalid_argument("Error opening " + std::string(filename));
			}
		}
		
		~file_binary()
		{
			fclose(_is);
		}
		
		bfile_iterator<type_elem> begin() const
		{
			return bfile_iterator<type_elem>(_is);
		}
		
		bfile_iterator<type_elem> end() const {return bfile_iterator<type_elem>(); }
		
		size_t        size () const  {  return 0;  }//todo ?
		
	private:
		FILE * _is;
	};

	
	
	
	inline unsigned int popcount_32(unsigned int x)
	{
		unsigned int m1 = 0x55555555;
		unsigned int m2 = 0x33333333;
		unsigned int m4 = 0x0f0f0f0f;
		unsigned int h01 = 0x01010101;
		x -= (x >> 1) & m1;               /* put count of each 2 bits into those 2 bits */
		x = (x & m2) + ((x >> 2) & m2);   /* put count of each 4 bits in */
		x = (x + (x >> 4)) & m4;          /* put count of each 8 bits in partie droite  4bit piece*/
		return (x * h01) >> 24;           /* returns left 8 bits of x + (x<<8) + ... */
	}


	inline unsigned int popcount_64(uint64_t x)
	{
		unsigned int low = x & 0xffffffff ;
		unsigned int high = ( x >> 32LL) & 0xffffffff ;

		return (popcount_32(low) + popcount_32(high));
	}


	///// progress bar
	class Progress
	{
	public:
		int timer_mode;
		struct timeval timestamp;
		double heure_debut, heure_actuelle ;
		std::string   message;

		uint64_t done;
		uint64_t todo;
		int subdiv ; // progress printed every 1/subdiv of total to do
		double partial;
		int _nthreads;
		std::vector<double > partial_threaded;
		std::vector<uint64_t > done_threaded;

		double steps ; //steps = todo/subidv

		void init(uint64_t ntasks, const char * msg,int nthreads =1)
		{
			_nthreads = nthreads;
			message = std::string(msg);
			gettimeofday(&timestamp, NULL);
			heure_debut = timestamp.tv_sec +(timestamp.tv_usec/1000000.0);

			//fprintf(stderr,"| %-*s |\n",98,msg);

			todo= ntasks;
			done = 0;
			partial =0;
			
			partial_threaded.resize(_nthreads);
			done_threaded.resize(_nthreads);
			
			for (int ii=0; ii<_nthreads;ii++) partial_threaded[ii]=0;
			for (int ii=0; ii<_nthreads;ii++) done_threaded[ii]=0;
			subdiv= 1000;
			steps = (double)todo / (double)subdiv;

			if(!timer_mode)
			{
				 fprintf(stderr,"[");fflush(stderr);
			}
		}

		void finish()
		{
			set(todo);
			 if(timer_mode)
			 	fprintf(stderr,"\n");
			 else
			 	fprintf(stderr,"]\n");

			fflush(stderr);
			todo= 0;
			done = 0;
			partial =0;

		}
		void finish_threaded()// called by only one of the threads
		{
			done = 0;
			//double rem = 0;
			for (int ii=0; ii<_nthreads;ii++) done += (done_threaded[ii] );
			for (int ii=0; ii<_nthreads;ii++) partial += (partial_threaded[ii] );

			finish();

		}
		void inc(uint64_t ntasks_done)
		{
			done += ntasks_done;
			partial += ntasks_done;


			while(partial >= steps)
			{
				if(timer_mode)
				{
					gettimeofday(&timestamp, NULL);
					heure_actuelle = timestamp.tv_sec +(timestamp.tv_usec/1000000.0);
					double elapsed = heure_actuelle - heure_debut;
					double speed = done / elapsed;
					double rem = (todo-done) / speed;
					if(done>todo) rem=0;
					int min_e  = (int)(elapsed / 60) ;
					elapsed -= min_e*60;
					int min_r  = (int)(rem / 60) ;
					rem -= min_r*60;

				 fprintf(stderr,"%c[%s]  %-5.3g%%   elapsed: %3i min %-2.0f sec   remaining: %3i min %-2.0f sec",13,
				 		message.c_str(),
				 		100*(double)done/todo,
				 		min_e,elapsed,min_r,rem);

				}
				else
				{
					 fprintf(stderr,"-");fflush(stderr);
				}
				partial -= steps;
			}


		}

		void inc(uint64_t ntasks_done, int tid) //threads collaborate to this same progress bar
		{
			partial_threaded[tid] += ntasks_done;
			done_threaded[tid] += ntasks_done;
			while(partial_threaded[tid] >= steps)
			{
				if(timer_mode)
				{
					struct timeval timet;
					double now;
					gettimeofday(&timet, NULL);
					now = timet.tv_sec +(timet.tv_usec/1000000.0);
					uint64_t total_done  = 0;
					for (int ii=0; ii<_nthreads;ii++) total_done += (done_threaded[ii] );
					double elapsed = now - heure_debut;
					double speed = total_done / elapsed;
					double rem = (todo-total_done) / speed;
					if(total_done > todo) rem =0;
					int min_e  =  (int)(elapsed / 60) ;
					elapsed -= min_e*60;
					int min_r  =  (int)(rem / 60) ;
					rem -= min_r*60;

					 fprintf(stderr,"%c[%s]  %-5.3g%%   elapsed: %3i min %-2.0f sec   remaining: %3i min %-2.0f sec",13,
					 		message.c_str(),
					 		100*(double)total_done/todo,
					 		min_e,elapsed,min_r,rem);
				}
				else
				{
					 fprintf(stderr,"-");fflush(stderr);
				}
				partial_threaded[tid] -= steps;

			}

		}

		void set(uint64_t ntasks_done)
		{
			if(ntasks_done > done)
				inc(ntasks_done-done);
		}
		Progress () :     timer_mode(0) {}
		//include timer, to print ETA ?
	};



////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark hasher
////////////////////////////////////////////////////////////////

	typedef std::array<uint64_t,10> hash_set_t;
	typedef std::array<uint64_t,2> hash_pair_t;



	template <typename Item> class HashFunctors
	{
	public:

		/** Constructor.
		 * \param[in] nbFct : number of hash functions to be used
		 * \param[in] seed : some initialization code for defining the hash functions. */
		HashFunctors ()
		{
			_nbFct = 7; // use 7 hash func
			_user_seed = 0;
			generate_hash_seed ();
		}

		//return one hash
        uint64_t operator ()  (const Item& key, size_t idx)  const {  return hash64 (key, _seed_tab[idx]);  }

        uint64_t hashWithSeed(const Item& key, uint64_t seed)  const {  return hash64 (key, seed);  }

		//this one returns all the 7 hashes
		//maybe use xorshift instead, for faster hash compute
		hash_set_t operator ()  (const Item& key)
		{
			hash_set_t	 hset;

			for(size_t ii=0;ii<10; ii++)
			{
				hset[ii] =  hash64 (key, _seed_tab[ii]);
			}
			return hset;
		}

	private:


		inline static uint64_t hash64 (Item key, uint64_t seed)
		{
			uint64_t hash = seed;
			hash ^= (hash <<  7) ^  key * (hash >> 3) ^ (~((hash << 11) + (key ^ (hash >> 5))));
			hash = (~hash) + (hash << 21);
			hash = hash ^ (hash >> 24);
			hash = (hash + (hash << 3)) + (hash << 8);
			hash = hash ^ (hash >> 14);
			hash = (hash + (hash << 2)) + (hash << 4);
			hash = hash ^ (hash >> 28);
			hash = hash + (hash << 31);

			return hash;
		}

		/* */
		void generate_hash_seed ()
		{
			static const uint64_t rbase[MAXNBFUNC] =
			{
				0xAAAAAAAA55555555ULL,  0x33333333CCCCCCCCULL,  0x6666666699999999ULL,  0xB5B5B5B54B4B4B4BULL,
				0xAA55AA5555335533ULL,  0x33CC33CCCC66CC66ULL,  0x6699669999B599B5ULL,  0xB54BB54B4BAA4BAAULL,
				0xAA33AA3355CC55CCULL,  0x33663366CC99CC99ULL
			};

			for (size_t i=0; i<MAXNBFUNC; ++i)  {  _seed_tab[i] = rbase[i];  }
			for (size_t i=0; i<MAXNBFUNC; ++i)  {  _seed_tab[i] = _seed_tab[i] * _seed_tab[(i+3) % MAXNBFUNC] + _user_seed ;  }
		}

		size_t _nbFct;

		static const size_t MAXNBFUNC = 10;
		uint64_t _seed_tab[MAXNBFUNC];
		uint64_t _user_seed;
	};

/* alternative hash functor based on xorshift, taking a single hash functor as input.
we need this 2-functors scheme because HashFunctors won't work with unordered_map.
(rayan)
*/

    // wrapper around HashFunctors to return only one value instead of 7
    template <typename Item> class SingleHashFunctor
	{
	public:
		uint64_t operator ()  (const Item& key, uint64_t seed=0xAAAAAAAA55555555ULL) const  {  return hashFunctors.hashWithSeed(key, seed);  }

	private:
		HashFunctors<Item> hashFunctors;
	};



    template <typename Item, class SingleHasher_t> class XorshiftHashFunctors
    {
        /*  Xorshift128*
            Written in 2014 by Sebastiano Vigna (vigna@acm.org)

            To the extent possible under law, the author has dedicated all copyright
            and related and neighboring rights to this software to the public domain
            worldwide. This software is distributed without any warranty.

            See <http://creativecommons.org/publicdomain/zero/1.0/>. */
        /* This is the fastest generator passing BigCrush without
           systematic failures, but due to the relatively short period it is
           acceptable only for applications with a mild amount of parallelism;
           otherwise, use a xorshift1024* generator.

           The state must be seeded so that it is not everywhere zero. If you have
           a nonzero 64-bit seed, we suggest to pass it twice through
           MurmurHash3's avalanching function. */

      //  uint64_t s[ 2 ];

        uint64_t next(uint64_t * s) {
            uint64_t s1 = s[ 0 ];
            const uint64_t s0 = s[ 1 ];
            s[ 0 ] = s0;
            s1 ^= s1 << 23; // a
            return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
        }

        public:


		uint64_t h0(hash_pair_t  & s, const Item& key )
		{
			s[0] =  singleHasher (key, 0xAAAAAAAA55555555ULL);
			return s[0];
		}

		uint64_t h1(hash_pair_t  & s, const Item& key )
		{
			s[1] =  singleHasher (key, 0x33333333CCCCCCCCULL);
			return s[1];
		}


		//return next hash an update state s
		uint64_t next(hash_pair_t  & s ) {
			uint64_t s1 = s[ 0 ];
			const uint64_t s0 = s[ 1 ];
			s[ 0 ] = s0;
			s1 ^= s1 << 23; // a
			return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
		}

        //this one returns all the  hashes
        hash_set_t operator ()  (const Item& key)
        {
			uint64_t s[ 2 ];

            hash_set_t   hset;

            hset[0] =  singleHasher (key, 0xAAAAAAAA55555555ULL);
            hset[1] =  singleHasher (key, 0x33333333CCCCCCCCULL);

            s[0] = hset[0];
            s[1] = hset[1];

            for(size_t ii=2;ii< 10 /* it's much better have a constant here, for inlining; this loop is super performance critical*/; ii++)
            {
                hset[ii] = next(s);
            }

            return hset;
        }
    private:
        SingleHasher_t singleHasher;
    };


////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark iterators
////////////////////////////////////////////////////////////////

	template <typename Iterator>
	struct iter_range
	{
		iter_range(Iterator b, Iterator e)
		: m_begin(b)
		, m_end(e)
		{}

		Iterator begin() const
		{ return m_begin; }

		Iterator end() const
		{ return m_end; }

		Iterator m_begin, m_end;
	};

	template <typename Iterator>
	iter_range<Iterator> range(Iterator begin, Iterator end)
	{
		return iter_range<Iterator>(begin, end);
	}

////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark BitVector
////////////////////////////////////////////////////////////////

	class bitVector {

	public:

		bitVector() : _size(0)
		{
			_bitArray = nullptr;
		}

		bitVector(uint64_t n) : _size(n)
		{
			_nchar  = (1ULL+n/64ULL);
			_bitArray =  (uint64_t *) calloc (_nchar,sizeof(uint64_t));
		}

		~bitVector()
		{
			if(_bitArray != nullptr)
				free(_bitArray);
		}

		 //copy constructor
		 bitVector(bitVector const &r)
		 {
			 _size =  r._size;
			 _nchar = r._nchar;
			 _ranks = r._ranks;
			 _bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
			 memcpy(_bitArray, r._bitArray, _nchar*sizeof(uint64_t) );
		 }
		
		// Copy assignment operator
		bitVector &operator=(bitVector const &r)
		{
			if (&r != this)
			{
				_size =  r._size;
				_nchar = r._nchar;
				_ranks = r._ranks;
				if(_bitArray != nullptr)
					free(_bitArray);
				_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
				memcpy(_bitArray, r._bitArray, _nchar*sizeof(uint64_t) );
			}
			return *this;
		}
	
		// Move assignment operator
		bitVector &operator=(bitVector &&r)
		{
			//printf("bitVector move assignment \n");
			if (&r != this)
			{
				if(_bitArray != nullptr)
					free(_bitArray);
				
				_size =  std::move (r._size);
				_nchar = std::move (r._nchar);
				_ranks = std::move (r._ranks);
				_bitArray = r._bitArray;
				r._bitArray = nullptr;
			}
			return *this;
		}
		// Move constructor
		bitVector(bitVector &&r) : _bitArray ( nullptr),_size(0)
		{
			*this = std::move(r);
		}
		
		
		void resize(uint64_t newsize)
		{
			//printf("bitvector resize from  %llu bits to %llu \n",_size,newsize);
			_nchar  = (1ULL+newsize/64ULL);
			_bitArray = (uint64_t *) realloc(_bitArray,_nchar*sizeof(uint64_t));
			_size = newsize;
		}

		size_t size() const
		{
			return _size;
		}

		uint64_t bitSize() const {return (_nchar*64ULL + _ranks.capacity()*64ULL );}

		//clear whole array
		void clear()
		{
			memset(_bitArray,0,_nchar*sizeof(uint64_t));
		}

		//clear collisions in interval, only works with start and size multiple of 64
		void clearCollisions(uint64_t start, size_t size, bitVector * cc)
		{
			assert( (start & 63) ==0);
			assert( (size & 63) ==0);
			uint64_t ids = (start/64ULL);
			for(uint64_t ii =0;  ii< (size/64ULL); ii++ )
			{
				_bitArray[ids+ii] =  _bitArray[ids+ii] & (~ (cc->get64(ii)) );
			}

			cc->clear();
		}


		//clear interval, only works with start and size multiple of 64
		void clear(uint64_t start, size_t size)
		{
			assert( (start & 63) ==0);
			assert( (size & 63) ==0);
			memset(_bitArray + (start/64ULL),0,(size/64ULL)*sizeof(uint64_t));
		}

		//for debug purposes
		void print() const
		{
			printf("bit array of size %llu: \n", static_cast<unsigned long long>(_size));
			for(uint64_t ii = 0; ii< _size; ii++)
			{
				if(ii%10==0)
					printf(" (%llu) ", static_cast<unsigned long long>(ii));
				int val = (_bitArray[ii >> 6] >> (ii & 63 ) ) & 1;
				printf("%i",val);
			}
			printf("\n");

			printf("rank array : size %llu \n", static_cast<unsigned long long>(_ranks.size()));
			for (uint64_t ii = 0; ii< _ranks.size(); ii++)
			{
				printf("%llu :  %lli,  ",static_cast<unsigned long long>(ii), static_cast<long long int>(_ranks[ii]));
			}
			printf("\n");
		}

		//return value at pos
		uint64_t operator[](uint64_t pos) const
		{
			//unsigned char * _bitArray8 = (unsigned char *) _bitArray;
			//return (_bitArray8[pos >> 3ULL] >> (pos & 7 ) ) & 1;

			return (_bitArray[pos >> 6ULL] >> (pos & 63 ) ) & 1;

		}

		//atomically   return old val and set to 1
		uint64_t atomic_test_and_set(uint64_t pos)
		{
			uint64_t oldval = 	__sync_fetch_and_or (_bitArray + (pos >> 6), (uint64_t) (1ULL << (pos & 63)) );

			return  ( oldval >> (pos & 63 ) ) & 1;
		}


		uint64_t get(uint64_t pos) const
		{
			return (*this)[pos];
		}

		uint64_t get64(uint64_t cell64) const
		{
			return _bitArray[cell64];
		}

		//set bit pos to 1
		void set(uint64_t pos)
		{
			assert(pos<_size);
			//_bitArray [pos >> 6] |=   (1ULL << (pos & 63) ) ;
			__sync_fetch_and_or (_bitArray + (pos >> 6ULL), (1ULL << (pos & 63)) );
		}

		//set bit pos to 0
		void reset(uint64_t pos)
		{
			//_bitArray [pos >> 6] &=   ~(1ULL << (pos & 63) ) ;
			__sync_fetch_and_and (_bitArray + (pos >> 6ULL), ~(1ULL << (pos & 63) ));
		}

		//return value of  last rank
		// add offset to  all ranks  computed
		uint64_t build_ranks(uint64_t offset =0)
		{
			_ranks.reserve(2+ _size/_nb_bits_per_rank_sample);

			uint64_t curent_rank = offset;
			for (size_t ii = 0; ii < _nchar; ii++) {
				if (((ii*64)  % _nb_bits_per_rank_sample) == 0) {
					_ranks.push_back(curent_rank);
				}
				curent_rank +=  popcount_64(_bitArray[ii]);
			}

			return curent_rank;
		}

		uint64_t rank(uint64_t pos) const
		{
			uint64_t word_idx = pos / 64ULL;
			uint64_t word_offset = pos % 64;
			uint64_t block = pos / _nb_bits_per_rank_sample;
			uint64_t r = _ranks[block];
			for (uint64_t w = block * _nb_bits_per_rank_sample / 64; w < word_idx; ++w) {
				r += popcount_64( _bitArray[w] );
			}
			uint64_t mask = (uint64_t(1) << word_offset ) - 1;
			r += popcount_64( _bitArray[word_idx] & mask);

			return r;
		}



		void save(std::ostream& os) const
		{
			os.write(reinterpret_cast<char const*>(&_size), sizeof(_size));
			os.write(reinterpret_cast<char const*>(&_nchar), sizeof(_nchar));
			os.write(reinterpret_cast<char const*>(_bitArray), (std::streamsize)(sizeof(uint64_t) * _nchar));
			size_t sizer = _ranks.size();
			os.write(reinterpret_cast<char const*>(&sizer),  sizeof(size_t));
			os.write(reinterpret_cast<char const*>(_ranks.data()), (std::streamsize)(sizeof(_ranks[0]) * _ranks.size()));
		}

		void load(std::istream& is)
		{
			is.read(reinterpret_cast<char*>(&_size), sizeof(_size));
			is.read(reinterpret_cast<char*>(&_nchar), sizeof(_nchar));
			this->resize(_size);
			is.read(reinterpret_cast<char *>(_bitArray), (std::streamsize)(sizeof(uint64_t) * _nchar));

			size_t sizer;
			is.read(reinterpret_cast<char *>(&sizer),  sizeof(size_t));
			_ranks.resize(sizer);
			is.read(reinterpret_cast<char*>(_ranks.data()), (std::streamsize)(sizeof(_ranks[0]) * _ranks.size()));
		}


	protected:
		uint64_t*  _bitArray;
		//uint64_t* _bitArray;
		uint64_t _size;
		uint64_t _nchar;

		 // epsilon =  64 / _nb_bits_per_rank_sample   bits
		// additional size for rank is epsilon * _size
		static const uint64_t _nb_bits_per_rank_sample = 512; //512 seems ok
		std::vector<uint64_t> _ranks;
	};

////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark level
////////////////////////////////////////////////////////////////

	
	static inline uint64_t fastrange64(uint64_t word, uint64_t p) {
		//return word %  p;

		return (uint64_t)(((__uint128_t)word * (__uint128_t)p) >> 64);

	}
	
	class level{
	public:
		level(){ }

		~level() {
		}

		uint64_t get(uint64_t hash_raw)
		{
		//	uint64_t hashi =    hash_raw %  hash_domain; //
			//uint64_t hashi = (uint64_t)(  ((__uint128_t) hash_raw * (__uint128_t) hash_domain) >> 64ULL);
			uint64_t hashi = fastrange64(hash_raw,hash_domain);
			return bitset.get(hashi);
		}
		
		uint64_t idx_begin;
		uint64_t hash_domain;
		bitVector  bitset;
	};


////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark mphf
////////////////////////////////////////////////////////////////


#define NBBUFF 10000
//#define NBBUFF 2

	template<typename Range,typename Iterator>
	struct thread_args
	{
		void * boophf;
		Range const * range;
		std::shared_ptr<void> it_p; /* used to be "Iterator it" but because of fastmode, iterator is polymorphic; TODO: think about whether it should be a unique_ptr actually */
		std::shared_ptr<void> until_p; /* to cache the "until" variable */
		int level;
	};

	//forward declaration

    template <typename elem_t, typename Hasher_t, typename Range, typename it_type>
	void * thread_processLevel(void * args);


    /* Hasher_t returns a single hash when operator()(elem_t key) is called.
       if used with XorshiftHashFunctors, it must have the following operator: operator()(elem_t key, uint64_t seed) */
    template <typename elem_t, typename Hasher_t>
	class mphf {

        /* this mechanisms gets P hashes out of Hasher_t */
        typedef XorshiftHashFunctors<elem_t,Hasher_t> MultiHasher_t ;
       // typedef HashFunctors<elem_t> MultiHasher_t; // original code (but only works for int64 keys)  (seems to be as fast as the current xorshift)
		//typedef IndepHashFunctors<elem_t,Hasher_t> MultiHasher_t; //faster than xorshift

	public:
		mphf() : _built(false)
		{}


		~mphf()
		{

		}

		
		// allow perc_elem_loaded  elements to be loaded in ram for faster construction (default 3%), set to 0 to desactivate
		template <typename Range>
		mphf( size_t n, Range const& input_range,int num_thread = 1,  double gamma = 2.0 , bool writeEach = true, bool progress =true, float perc_elem_loaded = 0.03) :
		_gamma(gamma), _hash_domain(size_t(ceil(double(n) * gamma))), _nelem(n), _num_thread(num_thread), _percent_elem_loaded_for_fastMode (perc_elem_loaded), _withprogress(progress)
		{
			if(n ==0) return;
			
			_fastmode = false;
			

			
			if(_percent_elem_loaded_for_fastMode > 0.0 )
				_fastmode =true;

			
			if(writeEach)
			{
				_writeEachLevel =true;
				_fastmode = false;
			}
			else
			{
				_writeEachLevel = false;
			}
			
			setup();

			if(_withprogress)
			{
				_progressBar.timer_mode=1;
				
				
				double total_raw = _nb_levels;
				
				double sum_geom_read =  ( 1.0 / (1.0 - _proba_collision));
				double total_writeEach = sum_geom_read + 1.0;

				double total_fastmode_ram =  (_fastModeLevel+1) +  ( pow(_proba_collision,_fastModeLevel)) * (_nb_levels-(_fastModeLevel+1))   ;
				
				printf("for info, total work write each  : %.3f    total work inram from level %i : %.3f  total work raw : %.3f \n",total_writeEach,_fastModeLevel,total_fastmode_ram,total_raw);

				if(writeEach)
				{
					_progressBar.init(_nelem * total_writeEach,"Building BooPHF",num_thread);
				}
				else if(_fastmode)
					_progressBar.init( _nelem * total_fastmode_ram    ,"Building BooPHF",num_thread);
				else
					_progressBar.init( _nelem * _nb_levels ,"Building BooPHF",num_thread);
			}

			uint64_t offset = 0;
			for(int ii = 0; ii< _nb_levels; ii++)
			{
				_tempBitset =  new bitVector(_levels[ii].hash_domain); // temp collision bitarray for this level

				processLevel(input_range,ii);

				_levels[ii].bitset.clearCollisions(0 , _levels[ii].hash_domain , _tempBitset);
				
				offset = _levels[ii].bitset.build_ranks(offset);

				delete _tempBitset;
			}

			if(_withprogress)
			_progressBar.finish_threaded();


			_lastbitsetrank = offset ;

			//printf("used temp ram for construction : %lli MB \n",setLevelFastmode.capacity()* sizeof(elem_t) /1024ULL/1024ULL);

			std::vector<elem_t>().swap(setLevelFastmode);   // clear setLevelFastmode reallocating


			pthread_mutex_destroy(&_mutex);
			
			_built = true;
		}


		uint64_t lookup(elem_t elem)
		{
			if(! _built) return ULLONG_MAX;
			
			//auto hashes = _hasher(elem);
			uint64_t non_minimal_hp,minimal_hp;


			hash_pair_t bbhash{};  int level;
			uint64_t level_hash = getLevel(bbhash,elem,&level);

			if( level == (_nb_levels-1))
			{
				auto in_final_map  = _final_hash.find (elem);
				if ( in_final_map == _final_hash.end() )
				{
					//elem was not in orignal set of keys
					return ULLONG_MAX; //  means elem not in set
				}
				else
				{
					minimal_hp =  in_final_map->second + _lastbitsetrank;
					//printf("lookup %llu  level %i   --> %llu \n",elem,level,minimal_hp);

					return minimal_hp;
				}
//				minimal_hp = _final_hash[elem] + _lastbitsetrank;
//				return minimal_hp;
			}
			else
			{
				//non_minimal_hp =  level_hash %  _levels[level].hash_domain; // in fact non minimal hp would be  + _levels[level]->idx_begin
				non_minimal_hp = fastrange64(level_hash,_levels[level].hash_domain);
			}
			minimal_hp = _levels[level].bitset.rank(non_minimal_hp );
		//	printf("lookup %llu  level %i   --> %llu \n",elem,level,minimal_hp);

			return minimal_hp;
		}

		uint64_t nbKeys() const
		{
            return _nelem;
        }

		uint64_t totalBitSize()
		{

			uint64_t totalsizeBitset = 0;
			for(int ii=0; ii<_nb_levels; ii++)
			{
				totalsizeBitset += _levels[ii].bitset.bitSize();
			}

			uint64_t totalsize =  totalsizeBitset +  _final_hash.size()*42*8 ;  // unordered map takes approx 42B per elem [personal test] (42B with uint64_t key, would be larger for other type of elem)

			printf("Bitarray    %12llu  bits (%.2f %%)   (array + ranks )\n",
				   totalsizeBitset, 100*(float)totalsizeBitset/totalsize);
			printf("final hash  %12lu  bits (%.2f %%) (nb in final hash %lu)\n",
				   _final_hash.size()*42*8, 100*(float)(_final_hash.size()*42*8)/totalsize,
				   _final_hash.size() );
			return totalsize;
		}

		template <typename Iterator>  //typename Range,
        void pthread_processLevel( std::vector<elem_t>  & buffer , std::shared_ptr<Iterator> shared_it, std::shared_ptr<Iterator> until_p, int i)
		{
			uint64_t nb_done =0;
			int tid =  __sync_fetch_and_add (&_nb_living, 1);
			auto until = *until_p;
			uint64_t inbuff =0;

			uint64_t writebuff =0;
			std::vector< elem_t > & myWriteBuff = bufferperThread[tid];

			
			for (bool isRunning=true;  isRunning ; )
			{

				//safely copy n items into buffer
				pthread_mutex_lock(&_mutex);
                for(; inbuff<NBBUFF && (*shared_it)!=until;  ++(*shared_it))
				{
                    buffer[inbuff]= *(*shared_it); inbuff++;
				}
				if((*shared_it)==until) isRunning =false;
				pthread_mutex_unlock(&_mutex);


				//do work on the n elems of the buffer
			//	printf("filling input  buff \n");

                for(uint64_t ii=0; ii<inbuff ; ii++)
				{
					elem_t val = buffer[ii];
					//printf("processing %llu  level %i\n",val, i);

					//auto hashes = _hasher(val);
					hash_pair_t bbhash{};  int level;
					uint64_t level_hash;
					if(_writeEachLevel)
						getLevel(bbhash,val,&level, i,i-1);
					else
						getLevel(bbhash,val,&level, i);

					
					//uint64_t level_hash = getLevel(bbhash,val,&level, i);

					//__sync_fetch_and_add(& _cptTotalProcessed,1);
					
					if(level == i) //insert into lvl i
					{
						
						//	__sync_fetch_and_add(& _cptLevel,1);

	

						
						if(_fastmode && i == _fastModeLevel)
						{

							uint64_t idxl2 = __sync_fetch_and_add(& _idxLevelsetLevelFastmode,1);
							//si depasse taille attendue pour setLevelFastmode, fall back sur slow mode mais devrait pas arriver si hash ok et proba avec nous
							if(idxl2>= setLevelFastmode.size())
								_fastmode = false;
							else
								setLevelFastmode[idxl2] = val; // create set for fast mode
						}

						//insert to level i+1 : either next level of the cascade or final hash if last level reached
						if(i == _nb_levels-1) //stop cascade here, insert into exact hash
						{

							uint64_t hashidx =  __sync_fetch_and_add (& _hashidx, 1);

							pthread_mutex_lock(&_mutex); //see later if possible to avoid this, mais pas bcp item vont la
							// calc rank de fin  precedent level qq part, puis init hashidx avec ce rank, direct minimal, pas besoin inser ds bitset et rank
							_final_hash[val] = hashidx;
							pthread_mutex_unlock(&_mutex);
						}
						else
						{
							
							//ils ont reach ce level
							//insert elem into curr level on disk --> sera utilise au level+1 , (mais encore besoin filtre)
							
							if(_writeEachLevel && i > 0 && i < _nb_levels -1)
							{
								if(writebuff>=NBBUFF)
								{
									//flush buffer
									flockfile(_currlevelFile);
									fwrite(myWriteBuff.data(),sizeof(elem_t),writebuff,_currlevelFile);
									funlockfile(_currlevelFile);
									writebuff = 0;
								
								}
								
									myWriteBuff[writebuff++] = val;
					
							}
							
							
							
							
							
							
							//computes next hash

							if ( level == 0)
								level_hash = _hasher.h0(bbhash,val);
							else if ( level == 1)
								level_hash = _hasher.h1(bbhash,val);
							else
							{
								level_hash = _hasher.next(bbhash);
							}
							insertIntoLevel(level_hash,i); //should be safe
						}
					}

					nb_done++;
					if((nb_done&1023) ==0  && _withprogress) {_progressBar.inc(nb_done,tid);nb_done=0; }

				}

				inbuff = 0;
			}
			
			if(_writeEachLevel && writebuff>0)
			{
				//flush buffer
				flockfile(_currlevelFile);
				fwrite(myWriteBuff.data(),sizeof(elem_t),writebuff,_currlevelFile);
				funlockfile(_currlevelFile);
				writebuff = 0;
			}

		}

		
		void save(std::ostream& os) const
		{

			os.write(reinterpret_cast<char const*>(&_gamma), sizeof(_gamma));
			os.write(reinterpret_cast<char const*>(&_nb_levels), sizeof(_nb_levels));
			os.write(reinterpret_cast<char const*>(&_lastbitsetrank), sizeof(_lastbitsetrank));
			os.write(reinterpret_cast<char const*>(&_nelem), sizeof(_nelem));
			 for(int ii=0; ii<_nb_levels; ii++)
			 {
			  	_levels[ii].bitset.save(os);
			 }

			//save final hash
			size_t final_hash_size = _final_hash.size();

			os.write(reinterpret_cast<char const*>(&final_hash_size), sizeof(size_t));


			// typename std::unordered_map<elem_t,uint64_t,Hasher_t>::iterator
			for (auto it = _final_hash.begin(); it != _final_hash.end(); ++it )
			{
				os.write(reinterpret_cast<char const*>(&(it->first)), sizeof(elem_t));
				os.write(reinterpret_cast<char const*>(&(it->second)), sizeof(uint64_t));
			}

		}

		void load(std::istream& is)
		{

			is.read(reinterpret_cast<char*>(&_gamma), sizeof(_gamma));
			is.read(reinterpret_cast<char*>(&_nb_levels), sizeof(_nb_levels));
			is.read(reinterpret_cast<char*>(&_lastbitsetrank), sizeof(_lastbitsetrank));
			is.read(reinterpret_cast<char*>(&_nelem), sizeof(_nelem));
			
			_levels.resize(_nb_levels);
			

			for(int ii=0; ii<_nb_levels; ii++)
			{
				//_levels[ii].bitset = new bitVector();
				_levels[ii].bitset.load(is);
			}



			//mini setup, recompute size of each level
			_proba_collision = 1.0 -  pow(((_gamma*(double)_nelem -1 ) / (_gamma*(double)_nelem)),_nelem-1);
			uint64_t previous_idx =0;
			_hash_domain = (size_t)  (ceil(double(_nelem) * _gamma)) ;
			for(int ii=0; ii<_nb_levels; ii++)
			{
				//_levels[ii] = new level();
				_levels[ii].idx_begin = previous_idx;
				_levels[ii].hash_domain =  (( (uint64_t) (_hash_domain * pow(_proba_collision,ii)) + 63) / 64 ) * 64;
				if(_levels[ii].hash_domain == 0 )
					_levels[ii].hash_domain  = 64 ;
				previous_idx += _levels[ii].hash_domain;
			}

			//restore final hash

			_final_hash.clear();
			size_t final_hash_size ;

			is.read(reinterpret_cast<char *>(&final_hash_size), sizeof(size_t));

			for(unsigned int ii=0; ii<final_hash_size; ii++)
			{
				elem_t key;
				uint64_t value;

				is.read(reinterpret_cast<char *>(&key), sizeof(elem_t));
				is.read(reinterpret_cast<char *>(&value), sizeof(uint64_t));

				_final_hash[key] = value;
			}
			_built = true;
		}


		private :

		void setup()
		{
			pthread_mutex_init(&_mutex, NULL);

			_pid = getpid() + printPt(pthread_self()) ;// + pthread_self();
			//printf("pt self %llu  pid %i \n",printPt(pthread_self()),_pid);

			_cptTotalProcessed=0;

			
			if(_fastmode)
			{
				setLevelFastmode.resize(_percent_elem_loaded_for_fastMode * (double)_nelem );
			}

			
			bufferperThread.resize(_num_thread);
			if(_writeEachLevel)
			{
				for(int ii=0; ii<_num_thread; ii++)
				{
					bufferperThread[ii].resize(NBBUFF);
				}
			}
			
			_proba_collision = 1.0 -  pow(((_gamma*(double)_nelem -1 ) / (_gamma*(double)_nelem)),_nelem-1);

			//double sum_geom =_gamma * ( 1.0 +  _proba_collision / (1.0 - _proba_collision));
			//printf("proba collision %f  sum_geom  %f   \n",_proba_collision,sum_geom);

			_nb_levels = 25;
			_levels.resize(_nb_levels);

			//build levels
			uint64_t previous_idx =0;
			for(int ii=0; ii<_nb_levels; ii++)
			{

				_levels[ii].idx_begin = previous_idx;

				// round size to nearest superior multiple of 64, makes it easier to clear a level
				_levels[ii].hash_domain =  (( (uint64_t) (_hash_domain * pow(_proba_collision,ii)) + 63) / 64 ) * 64;
				if(_levels[ii].hash_domain == 0 ) _levels[ii].hash_domain  = 64 ;
				previous_idx += _levels[ii].hash_domain;

				//printf("build level %i bit array : start %12llu, size %12llu  ",ii,_levels[ii]->idx_begin,_levels[ii]->hash_domain );
				//printf(" expected elems : %.2f %% total \n",100.0*pow(_proba_collision,ii));

			}
			
			for(int ii=0; ii<_nb_levels; ii++)
			{
				 if(pow(_proba_collision,ii) < _percent_elem_loaded_for_fastMode)
				 {
				 	_fastModeLevel = ii;
				 	 //printf("fast mode level :  %i \n",ii);
				 	break;
				 }
			}
		}


		//compute level and returns hash of last level reached
		uint64_t getLevel(hash_pair_t & bbhash, elem_t val,int * res_level, int maxlevel = 100, int minlevel =0)
		//uint64_t getLevel(hash_pair_t & bbhash, elem_t val,int * res_level, int maxlevel = 100, int minlevel =0)

		{
			int level = 0;
			uint64_t hash_raw=0;

			for (int ii = 0; ii<(_nb_levels-1) &&  ii < maxlevel ; ii++ )
			{

				//calc le hash suivant
				 if ( ii == 0)
					hash_raw = _hasher.h0(bbhash,val);
				else if ( ii == 1)
					hash_raw = _hasher.h1(bbhash,val);
				else
				{
					hash_raw = _hasher.next(bbhash);
				}


				if( ii >= minlevel && _levels[ii].get(hash_raw) ) //
				//if(  _levels[ii].get(hash_raw) ) //

				{
					break;
				}

				level++;
			}

			*res_level = level;
			return hash_raw;
		}


		//insert into bitarray
		void insertIntoLevel(uint64_t level_hash, int i)
		{
		//	uint64_t hashl =  level_hash % _levels[i].hash_domain;
			uint64_t hashl = fastrange64( level_hash,_levels[i].hash_domain);

			if( _levels[i].bitset.atomic_test_and_set(hashl) )
			{
				_tempBitset->atomic_test_and_set(hashl);
			}

		}


		//loop to insert into level i
		template <typename Range>
		void processLevel(Range const& input_range,int i)
		{
			////alloc the bitset for this level
			_levels[i].bitset =  bitVector(_levels[i].hash_domain); ;

			//printf("---process level %i   wr %i fast %i ---\n",i,_writeEachLevel,_fastmode);
			
			char fname_old[1000];
			sprintf(fname_old,"temp_p%i_level_%i",_pid,i-2);
			
			char fname_curr[1000];
			sprintf(fname_curr,"temp_p%i_level_%i",_pid,i);
			
			char fname_prev[1000];
			sprintf(fname_prev,"temp_p%i_level_%i",_pid,i-1);
			
			if(_writeEachLevel)
			{
				//file management :
				
				if(i>2) //delete previous file
				{
					unlink(fname_old);
				}
				
				if(i< _nb_levels-1 && i > 0 ) //create curr file
				{
					_currlevelFile = fopen(fname_curr,"w");
				}
			}
			
			
			_cptLevel = 0;
			_hashidx = 0;
			_idxLevelsetLevelFastmode =0;
			_nb_living =0;
			//create  threads
			pthread_t *tab_threads= new pthread_t [_num_thread];
			typedef decltype(input_range.begin()) it_type;
			thread_args<Range, it_type> t_arg; // meme arg pour tous
			t_arg.boophf = this;
			t_arg.range = &input_range;
			t_arg.it_p =  std::static_pointer_cast<void>(std::make_shared<it_type>(input_range.begin()));
			t_arg.until_p =  std::static_pointer_cast<void>(std::make_shared<it_type>(input_range.end()));


			t_arg.level = i;
			
			
			if(_writeEachLevel && (i > 1))
			{

				auto data_iterator_level = file_binary<elem_t>(fname_prev);
				
				typedef decltype(data_iterator_level.begin()) disklevel_it_type;
				
				//data_iterator_level.begin();
				t_arg.it_p = std::static_pointer_cast<void>(std::make_shared<disklevel_it_type>(data_iterator_level.begin()));
				t_arg.until_p = std::static_pointer_cast<void>(std::make_shared<disklevel_it_type>(data_iterator_level.end()));
				
				for(int ii=0;ii<_num_thread;ii++)
					pthread_create (&tab_threads[ii], NULL,  thread_processLevel<elem_t, Hasher_t, Range, disklevel_it_type>, &t_arg); //&t_arg[ii]
			
			
				//must join here before the block is closed and file_binary is destroyed (and closes the file)
				for(int ii=0;ii<_num_thread;ii++)
				{
					pthread_join(tab_threads[ii], NULL);
				}
				
			}
			
			else
			{
				if(_fastmode && i >= (_fastModeLevel+1))
				{

					/* we'd like to do t_arg.it = data_iterator.begin() but types are different;
					 so, casting to (void*) because of that; and we remember the type in the template */
					typedef decltype(setLevelFastmode.begin()) fastmode_it_type;
					t_arg.it_p =  std::static_pointer_cast<void>(std::make_shared<fastmode_it_type>(setLevelFastmode.begin()));
					t_arg.until_p =  std::static_pointer_cast<void>(std::make_shared<fastmode_it_type>(setLevelFastmode.end()));
					
					/* we'd like to do t_arg.it = data_iterator.begin() but types are different;
					 so, casting to (void*) because of that; and we remember the type in the template */
					
					for(int ii=0;ii<_num_thread;ii++)
						pthread_create (&tab_threads[ii], NULL,  thread_processLevel<elem_t, Hasher_t, Range, fastmode_it_type>, &t_arg); //&t_arg[ii]
					
					
				}
				else
				{
					for(int ii=0;ii<_num_thread;ii++)
						pthread_create (&tab_threads[ii], NULL,  thread_processLevel<elem_t, Hasher_t, Range, decltype(input_range.begin())>, &t_arg); //&t_arg[ii]
				}
				//joining
				for(int ii=0;ii<_num_thread;ii++)
				{
					pthread_join(tab_threads[ii], NULL);
				}
			}
			//printf("\ngoing to level %i  : %llu elems  %.2f %%  expected : %.2f %% \n",i,_cptLevel,100.0* _cptLevel/(float)_nelem,100.0* pow(_proba_collision,i) );

			//printf("\ncpt total processed %llu \n",_cptTotalProcessed);
			if(_fastmode && i == _fastModeLevel) //shrink to actual number of elements in set
			{
				//printf("\nresize setLevelFastmode to %lli \n",_idxLevelsetLevelFastmode);
				setLevelFastmode.resize(_idxLevelsetLevelFastmode);
			}
			delete [] tab_threads;
			
			if(_writeEachLevel)
			{
				if(i< _nb_levels-1 && i>0)
				{
					fflush(_currlevelFile);
					fclose(_currlevelFile);
				}
				
					if(i== _nb_levels- 1) //delete last file
					{
						unlink(fname_prev);
					}
			}

		}

	private:
		//level ** _levels;
		std::vector<level> _levels;
		int _nb_levels;
        MultiHasher_t _hasher;
		bitVector * _tempBitset;

		double _gamma;
		uint64_t _hash_domain;
		uint64_t _nelem;
        std::unordered_map<elem_t,uint64_t,Hasher_t> _final_hash;
		Progress _progressBar;
		int _nb_living;
		int _num_thread;
		uint64_t _hashidx;
		double _proba_collision;
		uint64_t _lastbitsetrank;
		uint64_t _idxLevelsetLevelFastmode;
		uint64_t _cptLevel;
		uint64_t _cptTotalProcessed;

		// fast build mode , requires  that _percent_elem_loaded_for_fastMode %   elems are loaded in ram
		float _percent_elem_loaded_for_fastMode ;
		bool _fastmode;
		std::vector< elem_t > setLevelFastmode;
	//	std::vector< elem_t > setLevelFastmode_next; // todo shrinker le set e nram a chaque niveau  ?
		
		std::vector< std::vector< elem_t > > bufferperThread;

		int _fastModeLevel;
		bool _withprogress;
		bool _built;
		bool _writeEachLevel;
		FILE * _currlevelFile;
		int _pid;
	public:
		pthread_mutex_t _mutex;
	};

////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark threading
////////////////////////////////////////////////////////////////


    template <typename elem_t, typename Hasher_t, typename Range, typename it_type>
	void * thread_processLevel(void * args)
	{
		if(args ==NULL) return NULL;

		thread_args<Range,it_type> *targ = (thread_args<Range,it_type>*) args;

		mphf<elem_t, Hasher_t>  * obw = (mphf<elem_t, Hasher_t > *) targ->boophf;
		int level = targ->level;
		std::vector<elem_t> buffer;
		buffer.resize(NBBUFF);
		
		pthread_mutex_t * mutex =  & obw->_mutex;

		pthread_mutex_lock(mutex); // from comment above: "//get starting iterator for this thread, must be protected (must not be currently used by other thread to copy elems in buff)"
        std::shared_ptr<it_type> startit = std::static_pointer_cast<it_type>(targ->it_p);
        std::shared_ptr<it_type> until_p = std::static_pointer_cast<it_type>(targ->until_p);
		pthread_mutex_unlock(mutex);

		obw->pthread_processLevel(buffer, startit, until_p, level);

		return NULL;
	}
}