1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
|
//
// RapMap - Rapid and accurate mapping of short reads to transcriptomes using
// quasi-mapping.
// Copyright (C) 2015, 2016 Rob Patro, Avi Srivastava, Hirak Sarkar
//
// This file is part of RapMap.
//
// RapMap is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// RapMap is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with RapMap. If not, see <http://www.gnu.org/licenses/>.
//
#ifndef __RAP_MAP_UTILS_HPP__
#define __RAP_MAP_UTILS_HPP__
#include <atomic>
#include <cmath>
#include <memory>
#include "xxhash.h"
#include "sparsepp/spp.h"
#include "SparseHashSerializer.hpp"
#include <cereal/archives/binary.hpp>
#include "Kmer.hpp"
#include "spdlog/spdlog.h"
#include "spdlog/fmt/ostr.h"
#include "spdlog/fmt/fmt.h"
#include "chobo/small_vector.hpp"
#include "RapMapConfig.hpp"
#include "nonstd/optional.hpp"
#include "FastxParser.hpp"
#ifdef RAPMAP_SALMON_SUPPORT
#include "LibraryFormat.hpp"
#endif
#ifndef __DEFINE_LIKELY_MACRO__
#define __DEFINE_LIKELY_MACRO__
#ifdef __GNUC__
#define LIKELY(x) __builtin_expect((x), 1)
#define UNLIKELY(x) __builtin_expect((x), 0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif
#endif
// Must be forward-declared
template <typename IndexT>
struct PairAlignmentFormatter;
template <typename IndexT>
struct SingleAlignmentFormatter;
// Forward-declare because the C++ compiler is dumb
// class RapMapIndex;
template<typename KeyT, typename ValT, typename HasherT>
//using RegHashT = google::dense_hash_map<KeyT, ValT, HasherT>;
using RegHashT = spp::sparse_hash_map<KeyT, ValT, HasherT>;
template<typename KeyT, typename ValT>
class FrugalBooMap;
template<typename KeyT, typename ValT>
using PerfectHashT = FrugalBooMap<KeyT, ValT>;
namespace rapmap {
namespace utils {
using my_mer = combinelib::kmers::Kmer<32,1>;
constexpr uint32_t newTxpSetMask = 0x80000000;
constexpr uint32_t rcSetMask = 0x40000000;
class MappingConfig {
public:
bool consistentHits{false};
bool doChaining{false};
float consensusFraction{1.0};
bool considerMultiPos{false};
bool allowDovetail{false};
};
// Positions are stored in a packed format, where the highest
// 2-bits encode if this position refers to a new transcript
// and whether or not the k-mer from the hash matches this txp
// in the forward or RC direction.
void decodePosition(uint32_t p, uint32_t& pout, bool& newTxp, bool& isRC);
template <typename IndexT>
void writeSAMHeader(IndexT& rmi, std::shared_ptr<spdlog::logger> out) {
fmt::MemoryWriter hd;
hd.write("@HD\tVN:1.0\tSO:unknown\n");
auto& txpNames = rmi.txpNames;
auto& txpLens = rmi.txpLens;
auto numRef = txpNames.size();
for (size_t i = 0; i < numRef; ++i) {
hd.write("@SQ\tSN:{}\tLN:{:d}\n", txpNames[i], txpLens[i]);
}
// Eventually output a @PG line
hd.write("@PG\tID:rapmap\tPN:rapmap\tVN:{}\n", rapmap::version);
std::string headerStr(hd.str());
// Don't include the last '\n', since the logger will do it for us.
headerStr.pop_back();
out->info(headerStr);
}
template <typename IndexT>
void writeSAMHeader(IndexT& rmi, std::ostream& outStream) {
fmt::MemoryWriter hd;
hd.write("@HD\tVN:1.0\tSO:unknown\n");
auto& txpNames = rmi.txpNames;
auto& txpLens = rmi.txpLens;
auto numRef = txpNames.size();
for (size_t i = 0; i < numRef; ++i) {
hd.write("@SQ\tSN:{}\tLN:{:d}\n", txpNames[i], txpLens[i]);
}
// Eventually output a @PG line
hd.write("@PG\tID:rapmap\tPN:rapmap\tVN:0.3.1\n");
outStream << hd.str();
}
// from http://stackoverflow.com/questions/9435385/split-a-string-using-c11
std::vector<std::string> tokenize(const std::string &s, char delim);
// from https://github.com/cppformat/cppformat/issues/105
class FixedBuffer : public fmt::Buffer<char> {
public:
FixedBuffer(char *array, std::size_t size)
: fmt::Buffer<char>(array, size) {}
protected:
void grow(std::size_t size) {
throw std::runtime_error("buffer overflow");
}
};
class FixedWriter : public fmt::Writer {
private:
FixedBuffer buffer_;
public:
FixedWriter(char *array, std::size_t size)
: fmt::Writer(buffer_), buffer_(array, size) {}
};
/**
* Stores both the key (k-mer)
* and the interval to which it corresponds.
* This is useful if the hash itself doesn't validate
* the key (e.g. a minimum perfect hash).
**/
template <typename IndexT>
struct SAIntervalWithKey {
uint64_t kmer;
// SAInterval<IndexT> second;
IndexT begin_;
IndexT end_;
inline IndexT begin() const { return begin_; }
inline IndexT end() const { return end_; }
template <typename Archive>
void load(Archive& ar) { ar(kmer, begin_, end_); }
template <typename Archive>
void save(Archive& ar) const { ar(kmer, begin_, end_); }
};
template <typename IndexT>
struct SAInterval {
/*
SAInterval(IndexT beginIn, IndexT endIn) : begin(beginIn), end(endIn) {}
SAInterval(std::initializer_list<IndexT> il) {
auto it = il.begin();
begin = *(it);
++it;
end = *(il.begin());
}
*/
using index_type = IndexT;
IndexT begin_;
IndexT end_;
inline IndexT begin() const { return begin_; }
inline IndexT end() const { return end_; }
template <typename Archive>
void load(Archive& ar) { ar(begin_, end_); }
//void load(Archive& ar) { ar(begin_, len_); }
template <typename Archive>
void save(Archive& ar) const { ar(begin_, end_); }
//void save(Archive& ar) const { ar(begin_, len_); }
};
struct HitCounters {
std::atomic<uint64_t> peHits{0};
std::atomic<uint64_t> seHits{0};
std::atomic<uint64_t> trueHits{0};
std::atomic<uint64_t> totHits{0};
std::atomic<uint64_t> numReads{0};
std::atomic<uint64_t> tooManyHits{0};
std::atomic<uint64_t> lastPrint{0};
std::atomic<uint64_t> numDovetails{0};
};
class JFMerKeyHasher{
public:
size_t operator()(const my_mer& m) const {
auto v = m.word(0);//get_bits(0, 2*k);
return XXH64(static_cast<void*>(&v), 8, 0);
}
};
class KmerKeyHasher {
//spp::spp_hash<uint64_t> hasher;
public:
//inline size_t operator()(const uint64_t& m) const { //{ return hasher(m); }
inline size_t operator()(const rapmap::utils::my_mer& m) const { //{ return hasher(m); }
//auto k = rapmap::utils::my_mer::k();
//auto v = m.get_bits(0, 2*k);
//auto v = m;
return XXH64(static_cast<void*>(const_cast<rapmap::utils::my_mer::base_type*>(m.data())), sizeof(m.word(0)) * m.nb_words(), 0);
}
inline size_t operator()(const uint64_t& m) const { //{ return hasher(m); }
return XXH64(static_cast<void*>(const_cast<uint64_t*>(&m)), sizeof(m), 0);
}
};
struct KmerInterval {
uint64_t offset;
uint32_t length;
template <typename Archive>
void save(Archive& arch) const {
arch(offset, length);
}
template <typename Archive>
void load(Archive& arch) {
arch(offset, length);
}
};
struct KmerInfo {
KmerInfo () : eqId(0), offset(0), count(0) {}
KmerInfo(uint32_t eqIdIn, uint32_t offsetIn, uint32_t countIn) :
eqId(eqIdIn), offset(offsetIn), count(countIn) {}
template <typename Archive>
void load(Archive& ar) {
ar(eqId, offset, count);
}
template <typename Archive>
void save(Archive& ar) const {
ar(eqId, offset, count);
}
uint32_t eqId = 0;
uint32_t offset = 0;
uint32_t count = 0;
};
template <class T>
inline void hashCombine(std::size_t& seed, const T& v)
{
std::hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
constexpr uint32_t uint32Invalid = std::numeric_limits<uint32_t>::max();
using PositionList = std::vector<uint32_t>;
using KmerInfoList = std::vector<KmerInfo>;
enum class ChainStatus : uint8_t {
PERFECT = 0,
UNGAPPED = 1,
ALIGNED_ON_LEFT = 2,
ALIGNED_ON_RIGHT = 3,
REGULAR = 4
};
inline std::ostream& operator<<(std::ostream& os, ChainStatus s) {
switch (s) {
case ChainStatus::PERFECT:
os << "PERFECT";
break;
case ChainStatus::UNGAPPED:
os << "UNGAPPED";
break;
case ChainStatus::ALIGNED_ON_LEFT:
os << "ALIGNED_ON_LEFT";
break;
case ChainStatus::ALIGNED_ON_RIGHT:
os << "ALIGNED_ON_RIGHT";
break;
case ChainStatus::REGULAR:
os << "REGULAR";
break;
default:
os << "UNKNOWN";
break;
}
return os;
}
class FragmentChainStatus {
public:
FragmentChainStatus() :
left(static_cast<typename std::underlying_type<ChainStatus>::type>(ChainStatus::REGULAR)),
right(static_cast<typename std::underlying_type<ChainStatus>::type>(ChainStatus::REGULAR))
{}
FragmentChainStatus(ChainStatus ls, ChainStatus rs) :
left(static_cast<typename std::underlying_type<ChainStatus>::type>(ls)),
right(static_cast<typename std::underlying_type<ChainStatus>::type>(rs))
{}
void setLeft(ChainStatus s) {
left = static_cast<typename std::underlying_type<ChainStatus>::type>(s);
}
void setRight(ChainStatus s) {
right = static_cast<typename std::underlying_type<ChainStatus>::type>(s);
}
ChainStatus getLeft() const {
return static_cast<ChainStatus>(left);
}
ChainStatus getRight() const {
return static_cast<ChainStatus>(right);
}
friend inline std::ostream& operator<<(std::ostream& os, const FragmentChainStatus& s) {
os << "fragment chain status {" << s.getLeft() << ", " << s.getRight() << "}";
return os;
}
private:
uint8_t left : 4, right : 4;
};
enum class MateStatus : uint8_t {
SINGLE_END = 0,
PAIRED_END_LEFT = 1,
PAIRED_END_RIGHT = 2,
PAIRED_END_PAIRED = 3,
NOTHING = std::numeric_limits<uint8_t>::max()
};
// Wraps the standard iterator of the Position list to provide
// some convenient functionality. In the future, maybe this
// should be a proper iterator adaptor.
struct PositionListHelper{
using PLIt = PositionList::iterator;
PositionListHelper(PLIt itIn, PLIt endIn) :
it_(itIn), end_(endIn) {}
// The underlying iterator shouldn't be advanced further
inline bool done() { return it_ == end_; }
// The actual postion on the transcript
int32_t pos() const { return static_cast<int32_t>((*it_) & 0x3FFFFFFF); }
// True if the position encoded was on the reverse complement strand
// of the reference transcript, false otherwise.
bool isRC() const { return (*it_) & 0x40000000; }
// True if we hit the position list for a new transcript, false otherwise
bool isNewTxp() const { return (*it_) & 0x80000000; }
void advanceToNextTranscript() {
if (it_ < end_) {
do {
++it_;
} while (!isNewTxp() and it_ != end_);
}
}
PLIt it_; // The underlying iterator
PLIt end_; // The end of the container
};
struct QuasiAlignment {
QuasiAlignment() :
tid(std::numeric_limits<uint32_t>::max()),
pos(std::numeric_limits<int32_t>::max()),
fwd(true),
fragLen(std::numeric_limits<uint32_t>::max()),
readLen(std::numeric_limits<uint32_t>::max()),
isPaired(false)
#ifdef RAPMAP_SALMON_SUPPORT
,format(LibraryFormat::formatFromID(0))
#endif // RAPMAP_SALMON_SUPPORT
{}
QuasiAlignment(uint32_t tidIn, int32_t posIn,
bool fwdIn, uint32_t readLenIn,
uint32_t fragLenIn = 0,
bool isPairedIn = false) :
tid(tidIn), pos(posIn), fwd(fwdIn),
fragLen(fragLenIn), readLen(readLenIn),
isPaired(isPairedIn)
#ifdef RAPMAP_SALMON_SUPPORT
,format(LibraryFormat::formatFromID(0))
#endif // RAPMAP_SALMON_SUPPORT
{}
QuasiAlignment(QuasiAlignment&& other) = default;
QuasiAlignment& operator=(QuasiAlignment&) = default;
QuasiAlignment& operator=(QuasiAlignment&& o) = default;
QuasiAlignment(const QuasiAlignment& o) = default;
QuasiAlignment(QuasiAlignment& o) = default;
inline void setChainScore(double chainScoreIn) {
chainScore_ = chainScoreIn;
}
inline double chainScore() const {
return chainScore_;
}
inline uint32_t transcriptID() const { return tid; }
inline double score() const { return score_; }
inline void score(double scoreIn) { score_ = scoreIn; }
inline int32_t alnScore() const { return alnScore_; }
inline void alnScore(int32_t alnScoreIn) { alnScore_ = alnScoreIn; }
inline uint32_t fragLength() const { return fragLen; }
inline int32_t hitPos() { return std::min(pos, matePos); }
// Some convenience functions to allow salmon interop
#ifdef RAPMAP_SALMON_SUPPORT
inline uint32_t fragLengthPedantic(uint32_t txpLen) const {
if (mateStatus != rapmap::utils::MateStatus::PAIRED_END_PAIRED
or fwd == mateIsFwd) {
return 0;
}
int32_t p1 = fwd ? pos : matePos;
int32_t sTxpLen = static_cast<int32_t>(txpLen);
p1 = (p1 < 0) ? 0 : p1;
p1 = (p1 > sTxpLen) ? sTxpLen : p1;
int32_t p2 = fwd ? matePos + mateLen : pos + readLen;
p2 = (p2 < 0) ? 0 : p2;
p2 = (p2 > sTxpLen) ? sTxpLen : p2;
return (p1 > p2) ? p1 - p2 : p2 - p1;
}
double logProb{HUGE_VAL};
double logBias{HUGE_VAL};
inline LibraryFormat libFormat() { return format; }
LibraryFormat format;
#endif // RAPMAP_SALMON_SUPPORT
bool hasMultiPos{false};
chobo::small_vector<int32_t> allPositions;
chobo::small_vector<int32_t> oppositeStrandPositions;
// Only 1 since the mate must have the same tid
// we won't call *chimeric* alignments here.
uint32_t tid;
// Left-most position of the hit
int32_t pos;
// left-most position of the mate
int32_t matePos;
// Is the read from the forward strand
bool fwd;
// Is the mate from the forward strand
bool mateIsFwd;
// The fragment length (template length)
// This is 0 for single-end or orphaned reads.
uint32_t fragLen;
// The read's length
uint32_t readLen;
// The mate's length
uint32_t mateLen;
// Is this a paired *alignment* or not
bool isPaired;
MateStatus mateStatus;
// numeric score associated with this mapping
double score_{1.0};
// actual ``alignment'' score associated with this mapping.
int32_t alnScore_{0};
// If one or both of the reads is a complete match (no mismatch, indels), say what kind.
FragmentChainStatus chainStatus;
double chainScore_{std::numeric_limits<double>::lowest()};
//int32_t queryOffset{-1};
//MateStatus completeMatchType{MateStatus::NOTHING};
};
struct HitInfo {
HitInfo(KmerInfoList::iterator kit, uint32_t merIDIn,
int32_t queryPosIn, bool queryRCIn) :
kinfo(kit), merID(merIDIn), queryPos(queryPosIn),
queryRC(queryRCIn) {}
KmerInfoList::iterator kinfo;
uint32_t merID;
int32_t queryPos;
bool queryRC;
};
template <typename OffsetT>
struct SAIntervalHit {
SAIntervalHit(OffsetT beginIn, OffsetT endIn, uint32_t lenIn, uint32_t queryPosIn, bool queryRCIn) :
begin(beginIn), end(endIn), len(lenIn), queryPos(queryPosIn), queryRC(queryRCIn) {}
OffsetT span() { return end - begin; }
OffsetT begin, end;
uint32_t len, queryPos;
bool queryRC;
};
struct SATxpQueryPos {
SATxpQueryPos(uint32_t posIn, uint32_t qposIn, bool queryRCIn, /*bool activeIn = false,*/ int32_t lenIn = -1) :
pos(posIn), queryPos(qposIn), queryRC(queryRCIn), /*active(activeIn),*/ len(lenIn){}
uint32_t pos, queryPos;
bool queryRC;//, active;
int32_t len;
};
struct ProcessedSAHit {
ProcessedSAHit() : tid(std::numeric_limits<uint32_t>::max()), active(false), numActive(1) {}
ProcessedSAHit(uint32_t txpIDIn, uint32_t txpPosIn, uint32_t queryPosIn, bool queryRCIn, uint32_t lenIn) :
tid(txpIDIn), active(false), numActive(1)
{
tqvec.emplace_back(txpPosIn, queryPosIn, queryRCIn, lenIn);
}
/**
* This enforces a more stringent consistency check on
* the hits for this transcript. The hits must be co-linear
* with respect to the query and target.
*
* input: numToCheck --- the number of hits to check in sorted order
* hits after the last of these need not be consistent.
* return: numToCheck if the first numToCheck hits are consistent;
* -1 otherwise
**/
int32_t checkConsistent(size_t readLen, int32_t numToCheck) {
auto numHits = tqvec.size();
// special case for only 1 or two hits (common)
if (numHits == 1) {
return numToCheck;
} else if (numHits == 2) {
auto& h1 = (tqvec[0].queryPos < tqvec[1].queryPos) ? tqvec[0] : tqvec[1];
auto& h2 = (tqvec[0].queryPos < tqvec[1].queryPos) ? tqvec[1] : tqvec[0];
if (h2.pos > h1.pos) {
int32_t distortion = (h2.pos - h1.pos) - (h2.queryPos - h1.queryPos);
return (distortion > -10 and distortion < 10) ? numToCheck : -1;
} else {
return -1;
}
//return (h2.pos > h1.pos) ? (numToCheck) : -1;
} else {
// first, sort by query position
std::sort(tqvec.begin(), tqvec.end(),
[](const SATxpQueryPos& q1, const SATxpQueryPos& q2) -> bool {
return q1.queryPos < q2.queryPos;
});
int32_t lastRefPos{std::numeric_limits<int32_t>::min()};
int32_t lastQueryPos{std::numeric_limits<int32_t>::min()};
bool firstHit{true};
//int32_t maxDistortion{0};
for (int32_t i = 0; i < numToCheck; ++i) {
int32_t refPos = static_cast<int32_t>(tqvec[i].pos);
int32_t queryPos = static_cast<int32_t>(tqvec[i].queryPos);
if (refPos > lastRefPos) {
int32_t distortion =
firstHit ? 0 : ((refPos - lastRefPos) - (queryPos - lastQueryPos));
firstHit = false;
if (distortion < -10 or distortion > 10) {
return i;
}
lastRefPos = refPos;
lastQueryPos = queryPos;
} else {
return i;
}
}
return numToCheck;
}
}
uint32_t tid;
std::vector<SATxpQueryPos> tqvec;
bool active;
uint32_t numActive;
uint32_t lastActiveInterval{1};
};
struct SAHitInfo {
SAHitInfo(uint32_t txpIDIn, uint32_t txpPosIn, uint32_t queryPosIn, bool queryRCIn) :
tid(txpIDIn), pos(txpPosIn), queryPos(queryPosIn), queryRC(queryRCIn) {}
uint32_t tid;
uint32_t pos;
uint32_t queryPos;
bool queryRC;
};
struct TxpQueryPos {
TxpQueryPos(PositionListHelper& ph, int32_t queryPosIn, bool queryRCIn) :
txpPosInfo(ph), queryPos(queryPosIn), queryRC(queryRCIn) {}
// Iterator for the beginning of the position list
// of a given k-mer into a given transcript.
PositionListHelper txpPosInfo;
// The position of the k-mer on the query.
int32_t queryPos;
bool queryRC;
};
struct ProcessedHit {
ProcessedHit() : tid(std::numeric_limits<uint32_t>::max()) {}
ProcessedHit(uint32_t tidIn,
PositionListHelper ph, int32_t queryPos, bool queryRC) :
tid(tidIn) {
tqvec.emplace_back(ph, queryPos, queryRC);
}
uint32_t tid; // transcript id
// A vector of iterators into the position list
// for the k-mers hitting this transcript
std::vector<TxpQueryPos> tqvec;
};
struct EqClass {
EqClass() :
txpListStart(uint32Invalid), txpListLen(uint32Invalid) {}
EqClass(uint32_t txpListStartIn, uint32_t txpListLenIn) :
txpListStart(txpListStartIn), txpListLen(txpListLenIn) {}
template <typename Archive>
void load (Archive& ar) {
ar(txpListStart, txpListLen);
}
template <typename Archive>
void save (Archive& ar) const {
ar(txpListStart, txpListLen);
}
uint32_t txpListStart;
uint32_t txpListLen;
};
inline void printMateStatus(rapmap::utils::MateStatus ms) {
switch(ms) {
case rapmap::utils::MateStatus::SINGLE_END:
std::cerr << "SINGLE END";
break;
case rapmap::utils::MateStatus::PAIRED_END_LEFT:
std::cerr << "PAIRED END (LEFT)";
break;
case rapmap::utils::MateStatus::PAIRED_END_RIGHT:
std::cerr << "PAIRED END (RIGHT)";
break;
case rapmap::utils::MateStatus::PAIRED_END_PAIRED:
std::cerr << "PAIRED END (PAIRED)";
break;
case rapmap::utils::MateStatus::NOTHING:
std::cerr << "NOTHING";
break;
}
}
// Declarations for functions dealing with SAM formatting and output
//
inline void adjustOverhang(int32_t& pos, uint32_t readLen,
uint32_t txpLen, FixedWriter& cigarStr) {
int32_t sTxpLen = static_cast<int32_t>(txpLen);
int32_t sReadLen = static_cast<int32_t>(readLen);
cigarStr.clear();
if (pos + static_cast<int32_t>(readLen) < 0) {
cigarStr.write("{}S", readLen);
pos = 0;
} else if (pos < 0) {
int32_t matchLen = readLen + pos;
int32_t clipLen = readLen - matchLen;
cigarStr.write("{}S{}M", clipLen, matchLen);
// Now adjust the mapping position
pos = 0;
} else if (pos > sTxpLen) {
cigarStr.write("{}S", readLen);
} else if (pos + sReadLen > sTxpLen) {
int32_t matchLen = sTxpLen - pos;
int32_t clipLen = readLen - matchLen;
cigarStr.write("{}M{}S", matchLen, clipLen);
} else {
cigarStr.write("{}M", readLen);
}
}
inline void adjustOverhang(QuasiAlignment& qa, uint32_t txpLen,
FixedWriter& cigarStr1, FixedWriter& cigarStr2) {
if (qa.isPaired) { // both mapped
adjustOverhang(qa.pos, qa.readLen, txpLen, cigarStr1);
adjustOverhang(qa.matePos, qa.mateLen, txpLen, cigarStr2);
} else if (qa.mateStatus == MateStatus::PAIRED_END_LEFT ) {
// left read mapped
adjustOverhang(qa.pos, qa.readLen, txpLen, cigarStr1);
// right read un-mapped will just be read length * S
cigarStr2.clear();
cigarStr2.write("{}S", qa.mateLen);
} else if (qa.mateStatus == MateStatus::PAIRED_END_RIGHT) {
// right read mapped
adjustOverhang(qa.pos, qa.readLen, txpLen, cigarStr2);
// left read un-mapped will just be read length * S
cigarStr1.clear();
cigarStr1.write("{}S", qa.readLen);
}
}
// get the sam flags for the quasialignment qaln.
// peinput is true if the read is paired in *sequencing*; false otherwise
// the sam flags for mate 1 are written into flags1 and for mate2 into flags2
inline void getSamFlags(const QuasiAlignment& qaln,
uint16_t& flags) {
/*
constexpr uint16_t pairedInSeq = 0x1;
constexpr uint16_t mappedInProperPair = 0x2;
constexpr uint16_t unmapped = 0x4;
constexpr uint16_t mateUnmapped = 0x8;
*/
constexpr uint16_t isRC = 0x10;
/*
constexpr uint16_t mateIsRC = 0x20;
constexpr uint16_t isRead1 = 0x40;
constexpr uint16_t isRead2 = 0x80;
constexpr uint16_t isSecondaryAlignment = 0x100;
constexpr uint16_t failedQC = 0x200;
constexpr uint16_t isPCRDup = 0x400;
constexpr uint16_t supplementaryAln = 0x800;
*/
flags = 0;
// Not paired in sequencing
// flags1 = (peInput) ? pairedInSeq : 0;
// flags |= properlyAligned;
// we don't output unmapped yet
// flags |= unmapped
// flags |= mateUnmapped
flags |= (qaln.fwd) ? 0 : isRC;
// Mate flag meaningless
// flags1 |= (qaln.mateIsFwd) ? 0 : mateIsRC;
// flags |= isRead1;
//flags2 |= isRead2;
}
// get the sam flags for the quasialignment qaln.
// peinput is true if the read is paired in *sequencing*; false otherwise
// the sam flags for mate 1 are written into flags1 and for mate2 into flags2
inline void getSamFlags(const QuasiAlignment& qaln,
bool peInput,
uint16_t& flags1,
uint16_t& flags2) {
constexpr uint16_t pairedInSeq = 0x1;
constexpr uint16_t properlyAligned = 0x2;
constexpr uint16_t unmapped = 0x4;
constexpr uint16_t mateUnmapped = 0x8;
constexpr uint16_t isRC = 0x10;
constexpr uint16_t mateIsRC = 0x20;
constexpr uint16_t isRead1 = 0x40;
constexpr uint16_t isRead2 = 0x80;
//constexpr uint16_t isSecondaryAlignment = 0x100;
//constexpr uint16_t failedQC = 0x200;
//constexpr uint16_t isPCRDup = 0x400;
//constexpr uint16_t supplementaryAln = 0x800;
flags1 = flags2 = 0;
flags1 = (peInput) ? pairedInSeq : 0;
flags1 |= (qaln.isPaired) ? properlyAligned : 0;
flags2 = flags1;
// we don't output unmapped yet
bool read1Unaligned = qaln.mateStatus == MateStatus::PAIRED_END_RIGHT;
bool read2Unaligned = qaln.mateStatus == MateStatus::PAIRED_END_LEFT;
// If read 1 is unaligned, flags1 gets "unmapped" and flags2 gets "mate unmapped"
flags1 |= (read1Unaligned) ? unmapped : 0;
flags2 |= (read1Unaligned) ? mateUnmapped : 0;
// If read 2 is unaligned, flags2 gets "unmapped" and flags1 gets "mate unmapped"
flags2 |= (read2Unaligned) ? unmapped : 0;
flags1 |= (read2Unaligned) ? mateUnmapped : 0;
flags1 |= (qaln.fwd) ? 0 : isRC;
flags1 |= (qaln.mateIsFwd) ? 0 : mateIsRC;
flags2 |= (qaln.mateIsFwd) ? 0 : isRC;
flags2 |= (qaln.fwd) ? 0 : mateIsRC;
flags1 |= isRead1;
flags2 |= isRead2;
}
// Adapted from
// https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library/blob/8c9933a1685e0ab50c7d8b7926c9068bc0c9d7d2/src/main.c#L36
void reverseRead(std::string& seq,
std::string& qual,
std::string& readWork,
std::string& qualWork);
void reverseRead(std::string& seq,
std::string& readWork);
std::string reverseComplement(std::string& seq);
uint32_t writeUnalignedSingleToStream(fastx_parser::ReadSeq& r, fmt::MemoryWriter& sstream);
uint32_t writeUnalignedPairToStream(fastx_parser::ReadPair& r, fmt::MemoryWriter& sstream);
template <typename ReadPairT, typename IndexT>
uint32_t writeAlignmentsToStream(
ReadPairT& r,
PairAlignmentFormatter<IndexT>& formatter,
HitCounters& hctr,
std::vector<QuasiAlignment>& jointHits,
fmt::MemoryWriter& sstream);
template <typename ReadT, typename IndexT>
uint32_t writeAlignmentsToStream(
ReadT& r,
SingleAlignmentFormatter<IndexT>& formatter,
HitCounters& hctr,
std::vector<QuasiAlignment>& jointHits,
fmt::MemoryWriter& sstream);
inline MateStatus mergeMatchType(MateStatus leftT, MateStatus rightT) {
if (leftT == MateStatus::NOTHING) {
return rightT;
}
if (rightT == MateStatus::NOTHING) {
return leftT;
}
return MateStatus::PAIRED_END_PAIRED;
}
enum class MergeResult : uint8_t {
HAD_NONE,
HAD_EMPTY_INTERSECTION,
HAD_CONCORDANT,
HAD_DISCORDANT,
HAD_ONLY_LEFT,
HAD_ONLY_RIGHT,
};
inline MergeResult mergeLeftRightHitsFuzzy(
bool leftMatches,
bool rightMatches,
std::vector<QuasiAlignment>& leftHits,
std::vector<QuasiAlignment>& rightHits,
std::vector<QuasiAlignment>& jointHits,
rapmap::utils::MappingConfig& mc,
uint32_t readLen,
uint32_t maxNumHits,
bool& tooManyHits,
HitCounters& hctr) {
using rapmap::utils::MergeResult;
MergeResult mergeRes{MergeResult::HAD_NONE};
const constexpr int32_t dovetailPenalty = std::numeric_limits<int32_t>::max() / 2;
bool considerMultiPos = mc.considerMultiPos;
bool allowDovetail = mc.allowDovetail;
if (leftHits.empty()) {
if (!leftMatches) {
if (!rightHits.empty()) {
jointHits.insert(jointHits.end(),
std::make_move_iterator(rightHits.begin()),
std::make_move_iterator(rightHits.end()));
hctr.seHits += rightHits.size();
mergeRes = MergeResult::HAD_ONLY_RIGHT;
}
}
} else if (rightHits.empty()) {
if (!rightMatches) {
if (!leftHits.empty()) {
jointHits.insert(jointHits.end(),
std::make_move_iterator(leftHits.begin()),
std::make_move_iterator(leftHits.end()));
hctr.seHits += leftHits.size();
mergeRes = MergeResult::HAD_ONLY_LEFT;
}
}
} else {
bool bestMappingIsDovetail = true;
bool hadOppositeStrandMapping = false;
constexpr const int32_t signedZero{0};
uint32_t sameTxpCount{0};
auto leftIt = leftHits.begin();
auto leftEnd = leftHits.end();
auto leftLen = std::distance(leftIt, leftEnd);
if (rightHits.size() > 0) {
auto rightIt = rightHits.begin();
auto rightEnd = rightHits.end();
auto rightLen = std::distance(rightIt, rightEnd);
size_t numHits{0};
jointHits.reserve(std::min(leftLen, rightLen));
uint32_t leftTxp, rightTxp;
while (leftIt != leftEnd && rightIt != rightEnd) {
leftTxp = leftIt->tid;
rightTxp = rightIt->tid;
if (leftTxp < rightTxp) {
++leftIt;
} else {
if (!(rightTxp < leftTxp)) {
++sameTxpCount;
// returned tuple is fwPos, rcPos, gapLength
auto findBestHitFWRC = [signedZero, considerMultiPos, allowDovetail, &hadOppositeStrandMapping](
chobo::small_vector<int32_t>& fwdHits,
chobo::small_vector<int32_t>& rcHits,
int32_t fwdReadLen,
bool& bestHitIsDovetail) ->
nonstd::optional<std::tuple<int32_t, int32_t, int32_t>> {
// If either of the position vectors is empty, there can be no valid
// mapping.
if (fwdHits.empty() or rcHits.empty()) {
bestHitIsDovetail = true;
return nonstd::nullopt;
}
hadOppositeStrandMapping = true;
// Remember the pair of positions that gives us the best gap
// here, a gap of 0 is "optimal".
int32_t bestGap = std::numeric_limits<int32_t>::max();
auto bestFWPosIt = fwdHits.begin();
auto bestRCPosIt = rcHits.begin();
// NOTE: Do we need an explicit fast path here?
// if (considerMultiPos and (fwdHits.size() > 1 or rcHits.size() > 1))
// Given a left position and a right position, if they produce a better
// gap than the current best, then update the best gap and remember these
// positions that produced it.
auto updateBestGap = [&bestGap, &bestFWPosIt, &bestRCPosIt,
signedZero, fwdReadLen, allowDovetail](
chobo::small_vector<int32_t>::iterator fwdPosIt,
chobo::small_vector<int32_t>::iterator rcPosIt
) {
// The gap between the end of the first read and the start of the
// second (we take the absolute value so it is always non-negative,
// even if they overlap).
// we expect the rc read to be "downstream" of the fwd read.
constexpr int32_t maxGap = std::numeric_limits<int32_t>::max();
int32_t gap = maxGap;
int32_t fwdPos = *fwdPosIt;
int32_t rcPos = *rcPosIt;
// If the rc read is already downstream of the fwd read, then it's not dovetailed
// so figure out the gap.
if (rcPos >= fwdPos) {
// NOTE: Can think harder about what the best measure of the gap penalty is.
gap = std::abs(rcPos - (fwdPos + static_cast<int32_t>(fwdReadLen)));
} else {
// If the rc read is upstream of the fwd read, then compute the gap with dovetail penalty
// if dovetails are allowed; otherwise leave it as maxGap.
gap = (fwdPos - rcPos) + dovetailPenalty;
}
// if this is the best gap so far
if (gap < bestGap) {
bestGap = gap;
bestFWPosIt = fwdPosIt;
bestRCPosIt = rcPosIt;
}
};
auto rcBeg = rcHits.begin(); auto rcEnd = rcHits.end();
// for every position the forward read could start
for (auto pIt = fwdHits.begin(); pIt != fwdHits.end(); ++pIt) {
auto p1 = *pIt;
// find the closest position for the rc read
auto lbIt = std::lower_bound(rcBeg, rcEnd, p1);
// p1 is greater than every position where the rc read can start
if (lbIt == rcEnd) {
auto closestIt = lbIt - 1;
updateBestGap(pIt, closestIt);
} else if (lbIt == rcBeg) {
// every position where the rc read can start is greater than p1
updateBestGap(pIt, lbIt);
} else {
// check the current element
updateBestGap(pIt, lbIt);
// and the previous
auto prevIt = lbIt - 1;
updateBestGap(pIt, prevIt);
}
}
// if we had a valid gap, return the best gap
bestHitIsDovetail = (bestGap >= dovetailPenalty);
if (allowDovetail) {
return (bestGap == std::numeric_limits<int32_t>::max()) ? nonstd::nullopt :
nonstd::optional<std::tuple<int32_t, int32_t, int32_t>>(std::make_tuple(*bestFWPosIt, *bestRCPosIt, bestGap));
} else {
return (bestGap > dovetailPenalty) ? nonstd::nullopt :
nonstd::optional<std::tuple<int32_t, int32_t, int32_t>>(std::make_tuple(*bestFWPosIt, *bestRCPosIt, bestGap));
}
};
// valid pairings have hits on opposite strands
auto& leftFwdHits = (leftIt->fwd) ? leftIt->allPositions : leftIt->oppositeStrandPositions;
auto& leftRCHits = (leftIt->fwd) ? leftIt->oppositeStrandPositions : leftIt->allPositions;
auto& rightFwdHits = (rightIt->fwd) ? rightIt->allPositions : rightIt->oppositeStrandPositions;
auto& rightRCHits = (rightIt->fwd) ? rightIt->oppositeStrandPositions : rightIt->allPositions;
bool bestHitIsDovetailFWRC{false};
bool bestHitIsDovetailRCFW{false};
auto bestFWRC = findBestHitFWRC(leftFwdHits, rightRCHits, static_cast<int32_t>(leftIt->readLen), bestHitIsDovetailFWRC);
auto bestRCFW = findBestHitFWRC(rightFwdHits, leftRCHits, static_cast<int32_t>(rightIt->readLen), bestHitIsDovetailRCFW);
bestMappingIsDovetail = (bestMappingIsDovetail and bestHitIsDovetailFWRC and bestHitIsDovetailRCFW);
bool foundValidHit{false};
bool leftFwd{false};
bool rightFwd{false};
int32_t bestGap{std::numeric_limits<int32_t>::max()};
int32_t leftPos = -1, rightPos = -1;
if (bestFWRC){
std::tie(leftPos, rightPos, bestGap) = *bestFWRC;
leftFwd = true; rightFwd = false;
foundValidHit = true;
}
if (bestRCFW) {
int32_t fwPos, rcPos, bestGapRCFW;
std::tie(fwPos, rcPos, bestGapRCFW) = *bestRCFW;
if (bestGapRCFW < bestGap) {
leftPos = rcPos;
rightPos = fwPos;
leftFwd = false; rightFwd = true;
}
foundValidHit = true;
}
if (foundValidHit) {
// If we consider only a single position per transcript
int32_t startRead1 = std::max(leftPos, signedZero);
int32_t startRead2 = std::max(rightPos, signedZero);
bool read1First{(startRead1 < startRead2)};
int32_t fragStartPos = read1First ? startRead1 : startRead2;
int32_t fragEndPos = read1First ?
(startRead2 + rightIt->readLen) : (startRead1 + leftIt->readLen);
uint32_t fragLen = fragEndPos - fragStartPos;
jointHits.emplace_back(leftTxp,
leftPos,
leftFwd,
leftIt->readLen,
fragLen, true);
// Fill in the mate info
auto& qaln = jointHits.back();
qaln.mateLen = rightIt->readLen;
qaln.matePos = rightPos;
qaln.mateIsFwd = rightFwd;
jointHits.back().mateStatus = MateStatus::PAIRED_END_PAIRED;
jointHits.back().chainStatus = FragmentChainStatus(leftIt->chainStatus.getLeft(), rightIt->chainStatus.getRight());
++numHits;
mergeRes = MergeResult::HAD_CONCORDANT;
if (numHits > maxNumHits) { tooManyHits = true; break; }
}
++leftIt;
} // END if (!(rightTxp < leftTxp))
++rightIt;
}
}
//if (triedHit and jointHits.empty()) { tooManyHits = true;}
}
// If we had a potentially valid mapping (hits from different strands), but the
// (best) only mappings for this fragment were dovetailed, then increment the
// numDovetails counter here.
if (bestMappingIsDovetail and hadOppositeStrandMapping) { ++hctr.numDovetails; }
if (tooManyHits) { jointHits.clear(); ++hctr.tooManyHits; }
if (mergeRes == MergeResult::HAD_NONE) {
// If we had hits on the same transcript, but our status isn't concordant,
// then we had discordant hits, otherwise, we had a null intersection.
mergeRes = (sameTxpCount > 0) ? MergeResult::HAD_DISCORDANT : MergeResult::HAD_EMPTY_INTERSECTION;
}
}
// If we had proper paired hits
if (jointHits.size() > 0) {
hctr.peHits += jointHits.size();
//orphanStatus = 0;
}
return mergeRes;
}
inline void mergeLeftRightHits(
std::vector<QuasiAlignment>& leftHits,
std::vector<QuasiAlignment>& rightHits,
std::vector<QuasiAlignment>& jointHits,
uint32_t readLen,
uint32_t maxNumHits,
bool& tooManyHits,
HitCounters& hctr) {
if (leftHits.size() > 0) {
constexpr const int32_t signedZero{0};
auto leftIt = leftHits.begin();
auto leftEnd = leftHits.end();
auto leftLen = std::distance(leftIt, leftEnd);
if (rightHits.size() > 0) {
auto rightIt = rightHits.begin();
auto rightEnd = rightHits.end();
auto rightLen = std::distance(rightIt, rightEnd);
size_t numHits{0};
jointHits.reserve(std::min(leftLen, rightLen));
uint32_t leftTxp, rightTxp;
while (leftIt != leftEnd && rightIt != rightEnd) {
leftTxp = leftIt->tid;
rightTxp = rightIt->tid;
if (leftTxp < rightTxp) {
++leftIt;
} else {
if (!(rightTxp < leftTxp)) {
int32_t startRead1 = std::max(leftIt->pos, signedZero);
int32_t startRead2 = std::max(rightIt->pos, signedZero);
bool read1First{(startRead1 < startRead2)};
int32_t fragStartPos = read1First ? startRead1 : startRead2;
int32_t fragEndPos = read1First ?
(startRead2 + rightIt->readLen) : (startRead1 + leftIt->readLen);
uint32_t fragLen = fragEndPos - fragStartPos;
jointHits.emplace_back(leftTxp,
startRead1,
leftIt->fwd,
leftIt->readLen,
fragLen, true);
// Fill in the mate info
auto& qaln = jointHits.back();
qaln.mateLen = rightIt->readLen;
qaln.matePos = startRead2;
qaln.mateIsFwd = rightIt->fwd;
jointHits.back().mateStatus = MateStatus::PAIRED_END_PAIRED;
jointHits.back().chainStatus = FragmentChainStatus(leftIt->chainStatus.getLeft(), rightIt->chainStatus.getRight());
//jointHits.back().completeMatchType = mergeMatchType(leftIt->completeMatchType, rightIt->completeMatchType);
++numHits;
if (numHits > maxNumHits) { tooManyHits = true; break; }
++leftIt;
}
++rightIt;
}
}
}
if (tooManyHits) { jointHits.clear(); ++hctr.tooManyHits; }
}
// If we had proper paired hits
if (jointHits.size() > 0) {
hctr.peHits += jointHits.size();
//orphanStatus = 0;
} else if (leftHits.size() + rightHits.size() > 0 and !tooManyHits) {
// If there weren't proper paired hits, then either
// there were too many hits, and we forcibly discarded the read
// or we take the single end hits.
auto numHits = leftHits.size() + rightHits.size();
hctr.seHits += numHits;
//orphanStatus = 0;
//orphanStatus |= (leftHits.size() > 0) ? 0x1 : 0;
//orphanStatus |= (rightHits.size() > 0) ? 0x2 : 0;
jointHits.insert(jointHits.end(),
std::make_move_iterator(leftHits.begin()),
std::make_move_iterator(leftHits.end()));
jointHits.insert(jointHits.end(),
std::make_move_iterator(rightHits.begin()),
std::make_move_iterator(rightHits.end()));
}
}
/*
template <typename Archive>
void save(Archive& archive, const my_mer& mer);
teplate <typename Archive>
void load(Archive& archive, my_mer& mer);
*/
}
}
#endif // __RAP_MAP_UTILS_HPP__
|