1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
#ifndef __SELECTIVE_ALIGNMENT_UTILS__
#define __SELECTIVE_ALIGNMENT_UTILS__
#include "ksw2pp/KSW2Aligner.hpp"
#include "metro/metrohash64.h"
#include "tsl/hopscotch_map.h"
#include "edlib.h"
namespace selective_alignment {
namespace utils {
enum class AlignmentPolicy : uint8_t { DEFAULT, BT2, BT2_STRICT };
/// Get alignment score
struct CacheEntry {
uint64_t hashKey;
int32_t alnScore;
CacheEntry(uint64_t hashKeyIn, int32_t alnScoreIn) :
hashKey(hashKeyIn), alnScore(alnScoreIn) {}
};
// Use a passthrough hash for the alignment cache, because
// the key *is* the hash.
struct PassthroughHash {
std::size_t operator()(uint64_t const& u) const { return u; }
};
using AlnCacheMap = tsl::hopscotch_map<uint64_t, int32_t, PassthroughHash>;
#ifndef RAPMAP_SALMON_SUPPORT
template <typename IndexT>
#endif
inline bool recoverOrphans(std::string& leftRead,
std::string& rightRead,
std::string& rc1,
std::string& rc2,
#ifdef RAPMAP_SALMON_SUPPORT // for salmon, we just have a vector of transcript objects
const std::vector<Transcript>& transcripts,
#else // otherwise, we have to pass in this information from the index
const std::string& seq,
const std::vector<std::string>& txpNames,
const std::vector<IndexT>& txpOffsets,
const std::vector<IndexT>& txpLens,
#endif
const std::vector<rapmap::utils::QuasiAlignment>& leftHits,
const std::vector<rapmap::utils::QuasiAlignment>& rightHits,
std::vector<rapmap::utils::QuasiAlignment>& jointHits) {
using QuasiAlignment = rapmap::utils::QuasiAlignment;
auto* r1 = leftRead.data();
auto* r2 = rightRead.data();
auto l1 = static_cast<int32_t>(leftRead.length());
auto l2 = static_cast<int32_t>(rightRead.length());
// We compute the reverse complements below only if we
// need them and don't have them.
char* r1rc = nullptr;
char* r2rc = nullptr;
const char* windowSeq = nullptr;
int32_t windowLength = -1;
int32_t maxDistRight = l2 / 4;
int32_t maxDistLeft = l1 / 4;
constexpr const int32_t signedZero{0};
int32_t lreadLen = l1;
//int32_t rreadLen = l2;
auto recoverSingleOrphan = [&] (const QuasiAlignment& anchorHit, bool anchorIsLeft) -> bool {
bool recovered = false;
auto txpID = anchorHit.tid;
#ifdef RAPMAP_SALMON_SUPPORT
auto& txp = transcripts[txpID];
const char* tseq = txp.Sequence();
#else
const char* tseq = seq.data() + txpOffsets[txpID];
#endif
int32_t anchorPos{anchorHit.allPositions.front()};
bool anchorFwd{anchorHit.fwd};
bool lfwd = false, rfwd = false;
int32_t startPos = -1, maxDist = -1, lpos = -1, rpos = -1, anchorLen = -1, otherLen = -1, rlen = -1;
const char* rptr{nullptr};
std::string* otherReadPtr{nullptr};
const char* otherRead{nullptr};
char* otherReadRC{nullptr};
std::string* otherRCSpace{nullptr};
rapmap::utils::ChainStatus leftChainStatus = rapmap::utils::ChainStatus::REGULAR;
rapmap::utils::ChainStatus rightChainStatus = rapmap::utils::ChainStatus::REGULAR;
if (anchorIsLeft) {
anchorLen = l1;
otherLen = l2;
maxDist = maxDistRight;
lpos = anchorPos;
rpos = -1;
lfwd = anchorFwd;
rfwd = !lfwd;
otherReadPtr = &rightRead;
otherRCSpace = &rc2;
otherRead = r2;
otherReadRC = r2rc;
leftChainStatus = anchorHit.chainStatus.getLeft();
} else {
anchorLen = l2;
otherLen = l1;
maxDist = maxDistLeft;
lpos = -1;
rpos = anchorPos;
rfwd = anchorFwd;
lfwd = !rfwd;
otherReadPtr = &leftRead;
otherRCSpace = &rc1;
otherRead = r1;
otherReadRC = r1rc;
rightChainStatus = anchorHit.chainStatus.getRight();
}
// if this hit is forward, look downstream, else upstream
#ifdef RAPMAP_SALMON_SUPPORT
auto refLength = txp.RefLength;
#else
auto refLength = txpLens[txpID];
#endif
if (anchorFwd) {
if (!otherReadRC){
rapmap::utils::reverseRead(*otherReadPtr, *otherRCSpace);
otherReadRC = const_cast<char*>(otherRCSpace->data());
}
rptr = otherReadRC;
rlen = otherLen;
startPos = std::max(signedZero, static_cast<int32_t>(anchorPos));
windowLength = std::min(1000, static_cast<int32_t>(refLength - startPos));
} else {
rptr = otherRead;
rlen = otherLen;
int32_t endPos = std::min(static_cast<int32_t>(refLength), static_cast<int32_t>(anchorPos) + anchorLen);
startPos = std::max(signedZero, endPos - 1000);
windowLength = std::min(1000, endPos);
}
windowSeq = tseq + startPos;
EdlibAlignResult result = edlibAlign(rptr, rlen, windowSeq, windowLength,
edlibNewAlignConfig(maxDist, EDLIB_MODE_HW, EDLIB_TASK_DISTANCE));
if (result.editDistance > -1) {
if (anchorIsLeft) {
rpos = startPos + result.endLocations[0] - otherLen;
} else {
lpos = startPos + result.endLocations[0] - otherLen;
}
// If we consider only a single position per transcript
int32_t startRead1 = std::max(lpos, signedZero);
int32_t startRead2 = std::max(rpos, signedZero);
bool read1First{(startRead1 < startRead2)};
int32_t fragStartPos = read1First ? startRead1 : startRead2;
int32_t fragEndPos = read1First ?
(startRead2 + l2) : (startRead1 + l1);
uint32_t fragLen = fragEndPos - fragStartPos;
jointHits.emplace_back(txpID,
lpos,
lfwd,
lreadLen,
fragLen, true);
// Fill in the mate info
auto& qaln = jointHits.back();
qaln.mateLen = rlen;
qaln.matePos = rpos;
qaln.mateIsFwd = rfwd;
jointHits.back().mateStatus = rapmap::utils::MateStatus::PAIRED_END_PAIRED;
jointHits.back().chainStatus = rapmap::utils::FragmentChainStatus(leftChainStatus, rightChainStatus);
recovered = true;
}
edlibFreeAlignResult(result);
return recovered;
};
{
auto leftIt = leftHits.begin();
auto leftEnd = leftHits.end();
auto leftLen = std::distance(leftIt, leftEnd);
auto rightIt = rightHits.begin();
auto rightEnd = rightHits.end();
auto rightLen = std::distance(rightIt, rightEnd);
jointHits.reserve(std::min(leftLen, rightLen));
bool didRecover{false};
while ((leftIt != leftEnd) and (rightIt != rightEnd)) {
uint32_t leftTxp, rightTxp;
leftTxp = leftIt->tid;
rightTxp = rightIt->tid;
if (leftTxp < rightTxp) {
didRecover = recoverSingleOrphan(*leftIt, true);
++leftIt;
} else if (rightTxp < leftTxp) {
didRecover = recoverSingleOrphan(*rightIt, false);
++rightIt;
} else if (rightTxp == leftTxp) {
/*
didRecover = recoverSingleOrphan(*leftIt, true);
++leftIt;
if(!didRecover) {
didRecover = recoverSingleOrphan(*rightIt, false);
}
++rightIt;
*/
//++leftIt; ++rightIt;
// Should not happen!
auto log = spdlog::get("jointLog");
log->error("Found a transcript in common between leftHits and rightHits while "
"trying to recover orphans. This should not happen. "
"Please report this via GitHub. ");
std::stringstream ss;
ss << "left hits : [";
for (auto& lh : leftHits) {
ss << "(" <<
#ifdef RAPMAP_SALMON_SUPPORT
transcripts[lh.tid].RefName
#else
txpNames[lh.tid]
#endif
<< ", " << lh.pos << ", " << lh.fwd << ") ; ";
}
ss << "]\n";
ss << "right hits : [";
for (auto& lh : rightHits ) {
ss << "(" <<
#ifdef RAPMAP_SALMON_SUPPORT
transcripts[lh.tid].RefName
#else
txpNames[lh.tid]
#endif
<< ", " << lh.pos << ", " << lh.fwd << ") ; ";
}
log->error(ss.str());
log->flush();
spdlog::drop_all();
std::exit(1);
}
}
while (leftIt != leftEnd) {
didRecover = recoverSingleOrphan(*leftIt, true);
++leftIt;
}
while(rightIt != rightEnd) {
didRecover = recoverSingleOrphan(*rightIt, false);
++rightIt;
}
(void)didRecover;
} // union / merge left and right orphans
return true;
}
inline int32_t getAlnScore(
ksw2pp::KSW2Aligner& aligner,
ksw_extz_t& ez,
int32_t pos, const char* rptr, int32_t rlen,
char* tseq, int32_t tlen,
int8_t mscore,
int8_t mmcost,
int32_t maxScore,
rapmap::utils::ChainStatus chainStat,
bool multiMapping, // was there > 1 hit for this read
AlignmentPolicy ap,
uint32_t buf,
AlnCacheMap& alnCache) {
// If this was a perfect match, don't bother to align or compute the score
if (chainStat == rapmap::utils::ChainStatus::PERFECT) {
return maxScore;
}
auto ungappedAln = [mscore, mmcost](char* ref, const char* query, int32_t len) -> int32_t {
int32_t ungappedScore{0};
for (int32_t i = 0; i < len; ++i) {
char c1 = *(ref + i);
char c2 = *(query + i);
c1 = (c1 == 'N' or c2 == 'N') ? c2 : c1;
ungappedScore += (c1 == c2) ? mscore : mmcost;
}
return ungappedScore;
};
int32_t s{std::numeric_limits<int32_t>::lowest()};
// TODO : Determine what is the most "appropriate" penalty for
// an overhang (based on the scoring function).
bool invalidStart = (pos < 0);
bool invalidEnd = (pos + rlen > tlen);
if (invalidStart) { rptr += -pos; rlen += pos; pos = 0; }
// if we are trying to mimic Bowtie2 with RSEM params
if (invalidStart or invalidEnd) {
switch (ap) {
case AlignmentPolicy::BT2:
case AlignmentPolicy::BT2_STRICT:
return s;
case AlignmentPolicy::DEFAULT:
default:
break;
}
}
if (pos < tlen) {
bool doUngapped{(!invalidStart) and (chainStat == rapmap::utils::ChainStatus::UNGAPPED)};
buf = (doUngapped) ? 0 : buf;
auto lnobuf = static_cast<uint32_t>(tlen - pos);
auto lbuf = static_cast<uint32_t>(rlen+buf);
auto useBuf = (lbuf < lnobuf);
uint32_t tlen1 = std::min(lbuf, lnobuf);
char* tseq1 = tseq + pos;
ez.max_q = ez.max_t = ez.mqe_t = ez.mte_q = -1;
ez.max = 0, ez.mqe = ez.mte = KSW_NEG_INF;
ez.n_cigar = 0;
uint64_t hashKey{0};
bool didHash{false};
if (!alnCache.empty()) {
// hash the reference string
uint32_t keyLen = useBuf ? tlen1 - buf : tlen1;
MetroHash64::Hash(reinterpret_cast<uint8_t*>(tseq1), keyLen, reinterpret_cast<uint8_t*>(&hashKey), 0);
didHash = true;
// see if we have this hash
auto hit = alnCache.find(hashKey);
// if so, we know the alignment score
if (hit != alnCache.end()) {
s = hit->second;
}
}
// If we got here with s == -1, we don't have the score cached
if (s == std::numeric_limits<int32_t>::lowest()) {
if (doUngapped) {
// signed version of tlen1
int32_t tlen1s = tlen1;
int32_t alnLen = rlen < tlen1s ? rlen : tlen1s;
s = ungappedAln(tseq1, rptr, alnLen);
} else {
/*
auto startBuf = std::min(pos, static_cast<int32_t>(buf));
int32_t bpos = pos - startBuf;
char* tseqTemp = tseq + bpos;
uint32_t tlenTemp = tlen1 + startBuf;
EdlibAlignResult result = edlibAlign(rptr, rlen, tseqTemp, tlenTemp,
edlibNewAlignConfig(-1, EDLIB_MODE_HW, EDLIB_TASK_PATH));
auto spos = result.startLocations[0];
tseq1 = tseq + bpos + spos;
auto* aln = result.alignment;
if (!aln or (aln[0] == 1 or aln[0] == 2)) {
edlibFreeAlignResult(result);
return s;
}
edlibFreeAlignResult(result);
*/
aligner(rptr, rlen, tseq1, tlen1, &ez, ksw2pp::EnumToType<ksw2pp::KSW2AlignmentType::EXTENSION>());
s = std::max(ez.mqe, ez.mte);
}
if (multiMapping) { // don't bother to fill up a cache unless this is a multi-mapping read
if (!didHash) {
uint32_t keyLen = useBuf ? tlen1 - buf : tlen1;
MetroHash64::Hash(reinterpret_cast<uint8_t*>(tseq1), keyLen, reinterpret_cast<uint8_t*>(&hashKey), 0);
}
alnCache[hashKey] = s;
} // was a multi-mapper
}
}
return s;
}
} // namespace utils
} // namespace selective_alignment
#endif //__SELECTIVE_ALIGNMENT_UTILS__
|