1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
|
// BooPHF library
// intended to be a minimal perfect hash function with fast and low memory construction, at the cost of (slightly) higher bits/elem than other state of the art libraries once built.
// should work with arbitray large number of elements, based on a cascade of "collision-free" bit arrays
#ifndef __BOO_PHF__
#define __BOO_PHF__
#include <stdio.h>
#include <climits>
#include <stdlib.h>
#include <iostream>
#include <math.h>
#include <array>
#include <unordered_map>
#include <vector>
#include <assert.h>
#include <sys/time.h>
#include <string.h>
#include <memory> // for make_shared
namespace boomphf {
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark utils
////////////////////////////////////////////////////////////////
inline unsigned int popcount_32(unsigned int x)
{
unsigned int m1 = 0x55555555;
unsigned int m2 = 0x33333333;
unsigned int m4 = 0x0f0f0f0f;
unsigned int h01 = 0x01010101;
x -= (x >> 1) & m1; /* put count of each 2 bits into those 2 bits */
x = (x & m2) + ((x >> 2) & m2); /* put count of each 4 bits in */
x = (x + (x >> 4)) & m4; /* put count of each 8 bits in partie droite 4bit piece*/
return (x * h01) >> 24; /* returns left 8 bits of x + (x<<8) + ... */
}
inline unsigned int popcount_64(uint64_t x)
{
unsigned int low = x & 0xffffffff ;
unsigned int high = ( x >> 32LL) & 0xffffffff ;
return (popcount_32(low) + popcount_32(high));
}
///// progress bar
class Progress
{
public:
int timer_mode;
struct timeval timestamp;
double heure_debut, heure_actuelle ;
std::string message;
uint64_t done;
uint64_t todo;
int subdiv ; // progress printed every 1/subdiv of total to do
double partial;
int _nthreads;
std::vector<double > partial_threaded;
std::vector<uint64_t > done_threaded;
double steps ; //steps = todo/subidv
void init(uint64_t ntasks, const char * msg,int nthreads =1)
{
_nthreads = nthreads;
message = std::string(msg);
gettimeofday(×tamp, NULL);
heure_debut = timestamp.tv_sec +(timestamp.tv_usec/1000000.0);
//fprintf(stderr,"| %-*s |\n",98,msg);
todo= ntasks;
done = 0;
partial =0;
partial_threaded.resize(_nthreads);
done_threaded.resize(_nthreads);
for (int ii=0; ii<_nthreads;ii++) partial_threaded[ii]=0;
for (int ii=0; ii<_nthreads;ii++) done_threaded[ii]=0;
subdiv= 1000;
steps = (double)todo / (double)subdiv;
if(!timer_mode)
{
fprintf(stderr,"[");fflush(stderr);
}
}
void finish()
{
set(todo);
if(timer_mode)
fprintf(stderr,"\n");
else
fprintf(stderr,"]\n");
fflush(stderr);
todo= 0;
done = 0;
partial =0;
}
void finish_threaded()// called by only one of the threads
{
done = 0;
double rem = 0;
for (int ii=0; ii<_nthreads;ii++) done += (done_threaded[ii] );
for (int ii=0; ii<_nthreads;ii++) partial += (partial_threaded[ii] );
finish();
}
void inc(uint64_t ntasks_done)
{
done += ntasks_done;
partial += ntasks_done;
while(partial >= steps)
{
if(timer_mode)
{
gettimeofday(×tamp, NULL);
heure_actuelle = timestamp.tv_sec +(timestamp.tv_usec/1000000.0);
double elapsed = heure_actuelle - heure_debut;
double speed = done / elapsed;
double rem = (todo-done) / speed;
if(done>todo) rem=0;
int min_e = (int)(elapsed / 60) ;
elapsed -= min_e*60;
int min_r = (int)(rem / 60) ;
rem -= min_r*60;
fprintf(stderr,"%c[%s] %-5.3g%% elapsed: %3i min %-2.0f sec remaining: %3i min %-2.0f sec",13,
message.c_str(),
100*(double)done/todo,
min_e,elapsed,min_r,rem);
}
else
{
fprintf(stderr,"-");fflush(stderr);
}
partial -= steps;
}
}
void inc(uint64_t ntasks_done, int tid) //threads collaborate to this same progress bar
{
partial_threaded[tid] += ntasks_done;
done_threaded[tid] += ntasks_done;
while(partial_threaded[tid] >= steps)
{
if(timer_mode)
{
struct timeval timet;
double now;
gettimeofday(&timet, NULL);
now = timet.tv_sec +(timet.tv_usec/1000000.0);
uint64_t total_done = 0;
for (int ii=0; ii<_nthreads;ii++) total_done += (done_threaded[ii] );
double elapsed = now - heure_debut;
double speed = total_done / elapsed;
double rem = (todo-total_done) / speed;
if(total_done > todo) rem =0;
int min_e = (int)(elapsed / 60) ;
elapsed -= min_e*60;
int min_r = (int)(rem / 60) ;
rem -= min_r*60;
fprintf(stderr,"%c[%s] %-5.3g%% elapsed: %3i min %-2.0f sec remaining: %3i min %-2.0f sec",13,
message.c_str(),
100*(double)total_done/todo,
min_e,elapsed,min_r,rem);
}
else
{
fprintf(stderr,"-");fflush(stderr);
}
partial_threaded[tid] -= steps;
}
}
void set(uint64_t ntasks_done)
{
if(ntasks_done > done)
inc(ntasks_done-done);
}
Progress () : timer_mode(0) {}
//include timer, to print ETA ?
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark hasher
////////////////////////////////////////////////////////////////
typedef std::array<uint64_t,10> hash_set_t;
typedef std::array<uint64_t,2> hash_pair_t;
template <typename Item> class HashFunctors
{
public:
/** Constructor.
* \param[in] nbFct : number of hash functions to be used
* \param[in] seed : some initialization code for defining the hash functions. */
HashFunctors ()
{
_nbFct = 7; // use 7 hash func
_user_seed = 0;
generate_hash_seed ();
}
//return one hash
uint64_t operator () (const Item& key, size_t idx) const { return hash64 (key, _seed_tab[idx]); }
uint64_t hashWithSeed(const Item& key, uint64_t seed) const { return hash64 (key, seed); }
//this one returns all the 7 hashes
//maybe use xorshift instead, for faster hash compute
hash_set_t operator () (const Item& key)
{
hash_set_t hset;
for(size_t ii=0;ii<10; ii++)
{
hset[ii] = hash64 (key, _seed_tab[ii]);
}
return hset;
}
private:
inline static uint64_t hash64 (Item key, uint64_t seed)
{
uint64_t hash = seed;
hash ^= (hash << 7) ^ key * (hash >> 3) ^ (~((hash << 11) + (key ^ (hash >> 5))));
hash = (~hash) + (hash << 21);
hash = hash ^ (hash >> 24);
hash = (hash + (hash << 3)) + (hash << 8);
hash = hash ^ (hash >> 14);
hash = (hash + (hash << 2)) + (hash << 4);
hash = hash ^ (hash >> 28);
hash = hash + (hash << 31);
return hash;
}
/* */
void generate_hash_seed ()
{
static const uint64_t rbase[MAXNBFUNC] =
{
0xAAAAAAAA55555555ULL, 0x33333333CCCCCCCCULL, 0x6666666699999999ULL, 0xB5B5B5B54B4B4B4BULL,
0xAA55AA5555335533ULL, 0x33CC33CCCC66CC66ULL, 0x6699669999B599B5ULL, 0xB54BB54B4BAA4BAAULL,
0xAA33AA3355CC55CCULL, 0x33663366CC99CC99ULL
};
for (size_t i=0; i<MAXNBFUNC; ++i) { _seed_tab[i] = rbase[i]; }
for (size_t i=0; i<MAXNBFUNC; ++i) { _seed_tab[i] = _seed_tab[i] * _seed_tab[(i+3) % MAXNBFUNC] + _user_seed ; }
}
size_t _nbFct;
static const size_t MAXNBFUNC = 10;
uint64_t _seed_tab[MAXNBFUNC];
uint64_t _user_seed;
};
/* alternative hash functor based on xorshift, taking a single hash functor as input.
we need this 2-functors scheme because HashFunctors won't work with unordered_map.
(rayan)
*/
// wrapper around HashFunctors to return only one value instead of 7
template <typename Item> class SingleHashFunctor
{
public:
uint64_t operator () (const Item& key, uint64_t seed=0xAAAAAAAA55555555ULL) const { return hashFunctors.hashWithSeed(key, seed); }
private:
HashFunctors<Item> hashFunctors;
};
template <typename Item, class SingleHasher_t> class XorshiftHashFunctors
{
/* Xorshift128*
Written in 2014 by Sebastiano Vigna (vigna@acm.org)
To the extent possible under law, the author has dedicated all copyright
and related and neighboring rights to this software to the public domain
worldwide. This software is distributed without any warranty.
See <http://creativecommons.org/publicdomain/zero/1.0/>. */
/* This is the fastest generator passing BigCrush without
systematic failures, but due to the relatively short period it is
acceptable only for applications with a mild amount of parallelism;
otherwise, use a xorshift1024* generator.
The state must be seeded so that it is not everywhere zero. If you have
a nonzero 64-bit seed, we suggest to pass it twice through
MurmurHash3's avalanching function. */
// uint64_t s[ 2 ];
uint64_t next(uint64_t * s) {
uint64_t s1 = s[ 0 ];
const uint64_t s0 = s[ 1 ];
s[ 0 ] = s0;
s1 ^= s1 << 23; // a
return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
}
public:
uint64_t h0(hash_pair_t & s, const Item& key )
{
s[0] = singleHasher (key, 0xAAAAAAAA55555555ULL);
return s[0];
}
uint64_t h1(hash_pair_t & s, const Item& key )
{
s[1] = singleHasher (key, 0x33333333CCCCCCCCULL);
return s[1];
}
//return next hash an update state s
uint64_t next(hash_pair_t & s ) {
uint64_t s1 = s[ 0 ];
const uint64_t s0 = s[ 1 ];
s[ 0 ] = s0;
s1 ^= s1 << 23; // a
return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
}
//this one returns all the hashes
hash_set_t operator () (const Item& key)
{
uint64_t s[ 2 ];
hash_set_t hset;
hset[0] = singleHasher (key, 0xAAAAAAAA55555555ULL);
hset[1] = singleHasher (key, 0x33333333CCCCCCCCULL);
s[0] = hset[0];
s[1] = hset[1];
for(size_t ii=2;ii< 10 /* it's much better have a constant here, for inlining; this loop is super performance critical*/; ii++)
{
hset[ii] = next(s);
}
return hset;
}
private:
SingleHasher_t singleHasher;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark iterators
////////////////////////////////////////////////////////////////
template <typename Iterator>
struct iter_range
{
iter_range(Iterator b, Iterator e)
: m_begin(b)
, m_end(e)
{}
Iterator begin() const
{ return m_begin; }
Iterator end() const
{ return m_end; }
Iterator m_begin, m_end;
};
template <typename Iterator>
iter_range<Iterator> range(Iterator begin, Iterator end)
{
return iter_range<Iterator>(begin, end);
}
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark BitVector
////////////////////////////////////////////////////////////////
class bitVector {
public:
bitVector() : _size(0)
{
_bitArray = nullptr;
}
bitVector(uint64_t n) : _size(n)
{
_nchar = (1ULL+n/64ULL);
_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
}
~bitVector()
{
if(_bitArray != nullptr)
free(_bitArray);
}
//copy constructor
bitVector(bitVector const &r)
{
_size = r._size;
_nchar = r._nchar;
_ranks = r._ranks;
_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
memcpy(_bitArray, r._bitArray, _nchar*sizeof(uint64_t) );
}
// Copy assignment operator
bitVector &operator=(bitVector const &r)
{
if (&r != this)
{
_size = r._size;
_nchar = r._nchar;
_ranks = r._ranks;
if(_bitArray != nullptr)
free(_bitArray);
_bitArray = (uint64_t *) calloc (_nchar,sizeof(uint64_t));
memcpy(_bitArray, r._bitArray, _nchar*sizeof(uint64_t) );
}
return *this;
}
// Move assignment operator
bitVector &operator=(bitVector &&r)
{
//printf("bitVector move assignment \n");
if (&r != this)
{
if(_bitArray != nullptr)
free(_bitArray);
_size = std::move (r._size);
_nchar = std::move (r._nchar);
_ranks = std::move (r._ranks);
_bitArray = r._bitArray;
r._bitArray = nullptr;
}
return *this;
}
// Move constructor
bitVector(bitVector &&r) : _bitArray ( nullptr),_size(0)
{
*this = std::move(r);
}
void resize(uint64_t newsize)
{
//printf("bitvector resize from %llu bits to %llu \n",_size,newsize);
_nchar = (1ULL+newsize/64ULL);
_bitArray = (uint64_t *) realloc(_bitArray,_nchar*sizeof(uint64_t));
_size = newsize;
}
size_t size() const
{
return _size;
}
uint64_t bitSize() const {return (_nchar*64ULL + _ranks.capacity()*64ULL );}
//clear whole array
void clear()
{
memset(_bitArray,0,_nchar*sizeof(uint64_t));
}
//clear collisions in interval, only works with start and size multiple of 64
void clearCollisions(uint64_t start, size_t size, bitVector * cc)
{
assert( (start & 63) ==0);
assert( (size & 63) ==0);
uint64_t ids = (start/64ULL);
for(uint64_t ii =0; ii< (size/64ULL); ii++ )
{
_bitArray[ids+ii] = _bitArray[ids+ii] & (~ (cc->get64(ii)) );
}
cc->clear();
}
//clear interval, only works with start and size multiple of 64
void clear(uint64_t start, size_t size)
{
assert( (start & 63) ==0);
assert( (size & 63) ==0);
memset(_bitArray + (start/64ULL),0,(size/64ULL)*sizeof(uint64_t));
}
//for debug purposes
void print() const
{
printf("bit array of size %lu: \n",_size);
for(uint64_t ii = 0; ii< _size; ii++)
{
if(ii%10==0)
printf(" (%lu) ",ii);
int val = (_bitArray[ii >> 6] >> (ii & 63 ) ) & 1;
printf("%i",val);
}
printf("\n");
printf("rank array : size %lu \n",_ranks.size());
for (uint64_t ii = 0; ii< _ranks.size(); ii++)
{
printf("%lu : %lu, ",ii,_ranks[ii]);
}
printf("\n");
}
//return value at pos
uint64_t operator[](uint64_t pos) const
{
return (_bitArray[pos >> 6ULL] >> (pos & 63 ) ) & 1;
}
//atomically return old val and set to 1
uint64_t atomic_test_and_set(uint64_t pos)
{
uint64_t oldval = __sync_fetch_and_or (_bitArray + (pos >> 6), (uint64_t) (1ULL << (pos & 63)) );
return ( oldval >> (pos & 63 ) ) & 1;
}
uint64_t get(uint64_t pos) const
{
return (*this)[pos];
}
uint64_t get64(uint64_t cell64) const
{
return _bitArray[cell64];
}
//set bit pos to 1
void set(uint64_t pos)
{
assert(pos<_size);
//_bitArray [pos >> 6] |= (1ULL << (pos & 63) ) ;
__sync_fetch_and_or (_bitArray + (pos >> 6ULL), (1ULL << (pos & 63)) );
}
//set bit pos to 0
void reset(uint64_t pos)
{
//_bitArray [pos >> 6] &= ~(1ULL << (pos & 63) ) ;
__sync_fetch_and_and (_bitArray + (pos >> 6ULL), ~(1ULL << (pos & 63) ));
}
//return value of last rank
// add offset to all ranks computed
uint64_t build_ranks(uint64_t offset =0)
{
_ranks.reserve(2+ _size/_nb_bits_per_rank_sample);
uint64_t curent_rank = offset;
for (size_t ii = 0; ii < _nchar; ii++) {
if (((ii*64) % _nb_bits_per_rank_sample) == 0) {
_ranks.push_back(curent_rank);
}
curent_rank += popcount_64(_bitArray[ii]);
}
return curent_rank;
}
uint64_t rank(uint64_t pos) const
{
uint64_t word_idx = pos / 64ULL;
uint64_t word_offset = pos % 64;
uint64_t block = pos / _nb_bits_per_rank_sample;
uint64_t r = _ranks[block];
for (uint64_t w = block * _nb_bits_per_rank_sample / 64; w < word_idx; ++w) {
r += popcount_64( _bitArray[w] );
}
uint64_t mask = (uint64_t(1) << word_offset ) - 1;
r += popcount_64( _bitArray[word_idx] & mask);
return r;
}
void save(std::ostream& os) const
{
os.write(reinterpret_cast<char const*>(&_size), sizeof(_size));
os.write(reinterpret_cast<char const*>(&_nchar), sizeof(_nchar));
os.write(reinterpret_cast<char const*>(_bitArray), (std::streamsize)(sizeof(uint64_t) * _nchar));
size_t sizer = _ranks.size();
os.write(reinterpret_cast<char const*>(&sizer), sizeof(size_t));
os.write(reinterpret_cast<char const*>(_ranks.data()), (std::streamsize)(sizeof(_ranks[0]) * _ranks.size()));
}
void load(std::istream& is)
{
is.read(reinterpret_cast<char*>(&_size), sizeof(_size));
is.read(reinterpret_cast<char*>(&_nchar), sizeof(_nchar));
this->resize(_size);
is.read(reinterpret_cast<char *>(_bitArray), (std::streamsize)(sizeof(uint64_t) * _nchar));
size_t sizer;
is.read(reinterpret_cast<char *>(&sizer), sizeof(size_t));
_ranks.resize(sizer);
is.read(reinterpret_cast<char*>(_ranks.data()), (std::streamsize)(sizeof(_ranks[0]) * _ranks.size()));
}
protected:
uint64_t* _bitArray;
//uint64_t* _bitArray;
uint64_t _size;
uint64_t _nchar;
// epsilon = 64 / _nb_bits_per_rank_sample bits
// additional size for rank is epsilon * _size
static const uint64_t _nb_bits_per_rank_sample = 512; //512 seems ok
std::vector<uint64_t> _ranks;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark level
////////////////////////////////////////////////////////////////
class level{
public:
level(){ }
~level() {
}
uint64_t get(uint64_t hash_raw)
{
uint64_t hashi = hash_raw % hash_domain;
return bitset.get(hashi);
}
uint64_t idx_begin;
uint64_t hash_domain;
bitVector bitset;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark mphf
////////////////////////////////////////////////////////////////
#define NBBUFF 10000
template<typename Range,typename Iterator>
struct thread_args
{
void * boophf;
Range const * range;
std::shared_ptr<void> it_p; /* used to be "Iterator it" but because of fastmode, iterator is polymorphic; TODO: think about whether it should be a unique_ptr actually */
std::shared_ptr<void> until_p; /* to cache the "until" variable */
int level;
};
//forward declaration
template <typename elem_t, typename Hasher_t, typename Range, typename it_type>
void * thread_processLevel(void * args);
/* Hasher_t returns a single hash when operator()(elem_t key) is called.
if used with XorshiftHashFunctors, it must have the following operator: operator()(elem_t key, uint64_t seed) */
template <typename elem_t, typename Hasher_t>
class mphf {
/* this mechanisms gets P hashes out of Hasher_t */
typedef XorshiftHashFunctors<elem_t,Hasher_t> MultiHasher_t ;
// typedef HashFunctors<elem_t> MultiHasher_t; // original code (but only works for int64 keys) (seems to be as fast as the current xorshift)
//typedef IndepHashFunctors<elem_t,Hasher_t> MultiHasher_t; //faster than xorshift
public:
mphf() : _built(false)
{}
~mphf()
{
}
// allow perc_elem_loaded elements to be loaded in ram for faster construction (default 3%), set to 0 to desactivate
template <typename Range>
mphf( size_t n, Range const& input_range,int num_thread = 1, double gamma = 2.0 , bool progress =true, float perc_elem_loaded = 0.03) :
_gamma(gamma), _hash_domain(size_t(ceil(double(n) * gamma))), _nelem(n), _num_thread(num_thread), _percent_elem_loaded_for_fastMode (perc_elem_loaded), _withprogress(progress)
{
if(n ==0) return;
_fastmode = false;
if(_percent_elem_loaded_for_fastMode > 0.0 )
_fastmode =true;
setup();
if(_withprogress)
{
_progressBar.timer_mode=1;
if(_fastmode)
_progressBar.init( _nelem * (_fastModeLevel+1) + ( _nelem * pow(_proba_collision,_fastModeLevel)) * (_nb_levels-(_fastModeLevel+1)) ,"Building BooPHF",num_thread);
else
_progressBar.init( _nelem * _nb_levels ,"Building BooPHF",num_thread);
}
uint64_t offset = 0;
for(int ii = 0; ii< _nb_levels; ii++)
{
_tempBitset = new bitVector(_levels[ii].hash_domain); // temp collision bitarray for this level
processLevel(input_range,ii);
_levels[ii].bitset.clearCollisions(0 , _levels[ii].hash_domain , _tempBitset);
offset = _levels[ii].bitset.build_ranks(offset);
delete _tempBitset;
}
if(_withprogress)
_progressBar.finish_threaded();
_lastbitsetrank = offset ;
//printf("used temp ram for construction : %lli MB \n",setLevelFastmode.capacity()* sizeof(elem_t) /1024ULL/1024ULL);
std::vector<elem_t>().swap(setLevelFastmode); // clear setLevelFastmode reallocating
pthread_mutex_destroy(&_mutex);
_built = true;
}
uint64_t lookup(elem_t elem)
{
if(! _built) return ULLONG_MAX;
//auto hashes = _hasher(elem);
uint64_t non_minimal_hp,minimal_hp;
hash_pair_t bbhash; int level;
uint64_t level_hash = getLevel(bbhash,elem,&level);
if( level == (_nb_levels-1))
{
auto in_final_map = _final_hash.find (elem);
if ( in_final_map == _final_hash.end() )
{
//elem was not in orignal set of keys
return ULLONG_MAX; // means elem not in set
}
else
{
minimal_hp = in_final_map->second + _lastbitsetrank;
return minimal_hp;
}
// minimal_hp = _final_hash[elem] + _lastbitsetrank;
// return minimal_hp;
}
else
{
non_minimal_hp = level_hash % _levels[level].hash_domain; // in fact non minimal hp would be + _levels[level]->idx_begin
}
minimal_hp = _levels[level].bitset.rank(non_minimal_hp );
return minimal_hp;
}
uint64_t nbKeys() const
{
return _nelem;
}
uint64_t totalBitSize()
{
uint64_t totalsizeBitset = 0;
for(int ii=0; ii<_nb_levels; ii++)
{
totalsizeBitset += _levels[ii].bitset.bitSize();
}
uint64_t totalsize = totalsizeBitset + _final_hash.size()*42*8 ; // unordered map takes approx 42B per elem [personal test] (42B with uint64_t key, would be larger for other type of elem)
printf("Bitarray %12llu bits (%.2f %%) (array + ranks )\n",
totalsizeBitset, 100*(float)totalsizeBitset/totalsize);
printf("final hash %12lu bits (%.2f %%) (nb in final hash %lu)\n",
_final_hash.size()*42*8, 100*(float)(_final_hash.size()*42*8)/totalsize,
_final_hash.size() );
return totalsize;
}
template <typename Iterator> //typename Range,
void pthread_processLevel( std::vector<elem_t> & buffer , std::shared_ptr<Iterator> shared_it, std::shared_ptr<Iterator> until_p, int i)
{
uint64_t nb_done =0;
int tid = __sync_fetch_and_add (&_nb_living, 1);
auto until = *until_p;
uint64_t inbuff =0;
for (bool isRunning=true; isRunning ; )
{
//safely copy n items into buffer
pthread_mutex_lock(&_mutex);
for(; inbuff<NBBUFF && (*shared_it)!=until; ++(*shared_it))
{
buffer[inbuff]= *(*shared_it); inbuff++;
}
if((*shared_it)==until) isRunning =false;
pthread_mutex_unlock(&_mutex);
//do work on the n elems of the buffer
for(uint64_t ii=0; ii<inbuff ; ii++)
{
elem_t val = buffer[ii];
//auto hashes = _hasher(val);
hash_pair_t bbhash; int level;
uint64_t level_hash = getLevel(bbhash,val,&level, i);
if(level == i) //insert into lvl i
{
__sync_fetch_and_add(& _cptLevel,1);
if(_fastmode && i == _fastModeLevel)
{
uint64_t idxl2 = __sync_fetch_and_add(& _idxLevelsetLevelFastmode,1);
//si depasse taille attendue pour setLevelFastmode, fall back sur slow mode mais devrait pas arriver si hash ok et proba avec nous
if(idxl2>= setLevelFastmode.size())
_fastmode = false;
else
setLevelFastmode[idxl2] = val; // create set for fast mode
}
//insert to level i+1 : either next level of the cascade or final hash if last level reached
if(i == _nb_levels-1) //stop cascade here, insert into exact hash
{
uint64_t hashidx = __sync_fetch_and_add (& _hashidx, 1);
pthread_mutex_lock(&_mutex); //see later if possible to avoid this, mais pas bcp item vont la
// calc rank de fin precedent level qq part, puis init hashidx avec ce rank, direct minimal, pas besoin inser ds bitset et rank
_final_hash[val] = hashidx;
pthread_mutex_unlock(&_mutex);
}
else
{
//computes next hash
if ( level == 0)
level_hash = _hasher.h0(bbhash,val);
else if ( level == 1)
level_hash = _hasher.h1(bbhash,val);
else
{
level_hash = _hasher.next(bbhash);
}
insertIntoLevel(level_hash,i); //should be safe
}
}
nb_done++;
if((nb_done&1023) ==0 && _withprogress) {_progressBar.inc(nb_done,tid);nb_done=0; }
}
inbuff = 0;
}
}
void save(std::ostream& os) const
{
os.write(reinterpret_cast<char const*>(&_gamma), sizeof(_gamma));
os.write(reinterpret_cast<char const*>(&_nb_levels), sizeof(_nb_levels));
os.write(reinterpret_cast<char const*>(&_lastbitsetrank), sizeof(_lastbitsetrank));
os.write(reinterpret_cast<char const*>(&_nelem), sizeof(_nelem));
for(int ii=0; ii<_nb_levels; ii++)
{
_levels[ii].bitset.save(os);
}
//save final hash
size_t final_hash_size = _final_hash.size();
os.write(reinterpret_cast<char const*>(&final_hash_size), sizeof(size_t));
// typename std::unordered_map<elem_t,uint64_t,Hasher_t>::iterator
for (auto it = _final_hash.begin(); it != _final_hash.end(); ++it )
{
os.write(reinterpret_cast<char const*>(&(it->first)), sizeof(elem_t));
os.write(reinterpret_cast<char const*>(&(it->second)), sizeof(uint64_t));
}
}
void load(std::istream& is)
{
is.read(reinterpret_cast<char*>(&_gamma), sizeof(_gamma));
is.read(reinterpret_cast<char*>(&_nb_levels), sizeof(_nb_levels));
is.read(reinterpret_cast<char*>(&_lastbitsetrank), sizeof(_lastbitsetrank));
is.read(reinterpret_cast<char*>(&_nelem), sizeof(_nelem));
_levels.resize(_nb_levels);
for(int ii=0; ii<_nb_levels; ii++)
{
//_levels[ii].bitset = new bitVector();
_levels[ii].bitset.load(is);
}
//mini setup, recompute size of each level
_proba_collision = 1.0 - pow(((_gamma*(double)_nelem -1 ) / (_gamma*(double)_nelem)),_nelem-1);
uint64_t previous_idx =0;
_hash_domain = (size_t) (ceil(double(_nelem) * _gamma)) ;
for(int ii=0; ii<_nb_levels; ii++)
{
//_levels[ii] = new level();
_levels[ii].idx_begin = previous_idx;
_levels[ii].hash_domain = (( (uint64_t) (_hash_domain * pow(_proba_collision,ii)) + 63) / 64 ) * 64;
if(_levels[ii].hash_domain == 0 )
_levels[ii].hash_domain = 64 ;
previous_idx += _levels[ii].hash_domain;
}
//restore final hash
_final_hash.clear();
size_t final_hash_size ;
is.read(reinterpret_cast<char *>(&final_hash_size), sizeof(size_t));
for(unsigned int ii=0; ii<final_hash_size; ii++)
{
elem_t key;
uint64_t value;
is.read(reinterpret_cast<char *>(&key), sizeof(elem_t));
is.read(reinterpret_cast<char *>(&value), sizeof(uint64_t));
_final_hash[key] = value;
}
_built = true;
}
private :
void setup()
{
pthread_mutex_init(&_mutex, NULL);
if(_fastmode)
setLevelFastmode.resize(_percent_elem_loaded_for_fastMode * (double)_nelem );
_proba_collision = 1.0 - pow(((_gamma*(double)_nelem -1 ) / (_gamma*(double)_nelem)),_nelem-1);
double sum_geom =_gamma * ( 1.0 + _proba_collision / (1.0 - _proba_collision));
// printf("proba collision %f sum_geom %f \n",_proba_collision,sum_geom);
_nb_levels = 25;
_levels.resize(_nb_levels);
//build levels
uint64_t previous_idx =0;
for(int ii=0; ii<_nb_levels; ii++)
{
_levels[ii].idx_begin = previous_idx;
// round size to nearest superior multiple of 64, makes it easier to clear a level
_levels[ii].hash_domain = (( (uint64_t) (_hash_domain * pow(_proba_collision,ii)) + 63) / 64 ) * 64;
if(_levels[ii].hash_domain == 0 ) _levels[ii].hash_domain = 64 ;
previous_idx += _levels[ii].hash_domain;
//printf("build level %i bit array : start %12llu, size %12llu ",ii,_levels[ii]->idx_begin,_levels[ii]->hash_domain );
//printf(" expected elems : %.2f %% total \n",100.0*pow(_proba_collision,ii));
}
for(int ii=0; ii<_nb_levels; ii++)
{
if(pow(_proba_collision,ii) < _percent_elem_loaded_for_fastMode)
{
_fastModeLevel = ii;
//printf("fast mode level : %i \n",ii);
break;
}
}
}
//compute level and returns hash of last level reached
uint64_t getLevel(hash_pair_t & bbhash, elem_t val,int * res_level, int maxlevel = 100)
{
int level = 0;
uint64_t hash_raw=0;
for (int ii=0; ii<(_nb_levels-1) && ii < maxlevel ; ii++ )
{
//calc le hash suivant
if ( ii == 0)
hash_raw = _hasher.h0(bbhash,val);
else if ( ii == 1)
hash_raw = _hasher.h1(bbhash,val);
else
{
hash_raw = _hasher.next(bbhash);
}
if( _levels[ii].get(hash_raw) )
{
break;
}
level++;
}
*res_level = level;
return hash_raw;
}
//insert into bitarray
void insertIntoLevel(uint64_t level_hash, int i)
{
uint64_t hashl = level_hash % _levels[i].hash_domain;
if( _levels[i].bitset.atomic_test_and_set(hashl) )
{
_tempBitset->atomic_test_and_set(hashl);
}
}
//loop to insert into level i
template <typename Range>
void processLevel(Range const& input_range,int i)
{
////alloc the bitset for this level
_levels[i].bitset = bitVector(_levels[i].hash_domain); ;
_cptLevel = 0;
_hashidx = 0;
_idxLevelsetLevelFastmode =0;
_nb_living =0;
//create threads
pthread_t *tab_threads= new pthread_t [_num_thread];
typedef decltype(input_range.begin()) it_type;
thread_args<Range, it_type> t_arg; // meme arg pour tous
t_arg.boophf = this;
t_arg.range = &input_range;
t_arg.it_p = std::static_pointer_cast<void>(std::make_shared<it_type>(input_range.begin()));
t_arg.until_p = std::static_pointer_cast<void>(std::make_shared<it_type>(input_range.end()));
t_arg.level = i;
if(_fastmode && i >= (_fastModeLevel+1))
{
auto data_iterator = boomphf::range(static_cast<const elem_t*>( &setLevelFastmode[0]), static_cast<const elem_t*>( (&setLevelFastmode[0]) +setLevelFastmode.size()));
typedef decltype(data_iterator.begin()) fastmode_it_type;
t_arg.it_p = std::static_pointer_cast<void>(std::make_shared<fastmode_it_type>(data_iterator.begin()));
t_arg.until_p = std::static_pointer_cast<void>(std::make_shared<fastmode_it_type>(data_iterator.end()));
/* we'd like to do t_arg.it = data_iterator.begin() but types are different;
so, casting to (void*) because of that; and we remember the type in the template */
for(int ii=0;ii<_num_thread;ii++)
pthread_create (&tab_threads[ii], NULL, thread_processLevel<elem_t, Hasher_t, Range, fastmode_it_type>, &t_arg); //&t_arg[ii]
}
else
{
for(int ii=0;ii<_num_thread;ii++)
pthread_create (&tab_threads[ii], NULL, thread_processLevel<elem_t, Hasher_t, Range, decltype(input_range.begin())>, &t_arg); //&t_arg[ii]
}
//joining
for(int ii=0;ii<_num_thread;ii++)
{
pthread_join(tab_threads[ii], NULL);
}
//printf("\ngoing to level %i : %llu elems %.2f %% expected : %.2f %% \n",i,_cptLevel,100.0* _cptLevel/(float)_nelem,100.0* pow(_proba_collision,i) );
if(_fastmode && i == _fastModeLevel) //shrink to actual number of elements in set
{
//printf("resize setLevelFastmode to %lli \n",_idxLevelsetLevelFastmode);
setLevelFastmode.resize(_idxLevelsetLevelFastmode);
}
delete [] tab_threads;
}
private:
//level ** _levels;
std::vector<level> _levels;
int _nb_levels;
MultiHasher_t _hasher;
bitVector * _tempBitset;
double _gamma;
uint64_t _hash_domain;
uint64_t _nelem;
std::unordered_map<elem_t,uint64_t,Hasher_t> _final_hash;
Progress _progressBar;
int _nb_living;
int _num_thread;
uint64_t _hashidx;
double _proba_collision;
uint64_t _lastbitsetrank;
uint64_t _idxLevelsetLevelFastmode;
uint64_t _cptLevel;
// fast build mode , requires that _percent_elem_loaded_for_fastMode % elems are loaded in ram
float _percent_elem_loaded_for_fastMode ;
bool _fastmode;
std::vector< elem_t > setLevelFastmode;
int _fastModeLevel;
bool _withprogress;
bool _built;
public:
pthread_mutex_t _mutex;
};
////////////////////////////////////////////////////////////////
#pragma mark -
#pragma mark threading
////////////////////////////////////////////////////////////////
template <typename elem_t, typename Hasher_t, typename Range, typename it_type>
void * thread_processLevel(void * args)
{
if(args ==NULL) return NULL;
thread_args<Range,it_type> *targ = (thread_args<Range,it_type>*) args;
mphf<elem_t, Hasher_t> * obw = (mphf<elem_t, Hasher_t > *) targ->boophf;
int level = targ->level;
std::vector<elem_t> buffer;
buffer.resize(NBBUFF);
pthread_mutex_t * mutex = & obw->_mutex;
pthread_mutex_lock(mutex); // from comment above: "//get starting iterator for this thread, must be protected (must not be currently used by other thread to copy elems in buff)"
std::shared_ptr<it_type> startit = std::static_pointer_cast<it_type>(targ->it_p);
std::shared_ptr<it_type> until_p = std::static_pointer_cast<it_type>(targ->until_p);
pthread_mutex_unlock(mutex);
obw->pthread_processLevel(buffer, startit, until_p, level);
return NULL;
}
}
#endif //__BOO_PHF__
|