1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#ifndef __BOO_MAP_FRUGAL__
#define __BOO_MAP_FRUGAL__
#include "BooPHF.hpp"
#include "RapMapUtils.hpp"
#include "cereal/types/vector.hpp"
#include "cereal/types/utility.hpp"
#include "cereal/archives/binary.hpp"
#include <fstream>
#include <vector>
#include <iterator>
#include <type_traits>
#include <sys/stat.h>
// adapted from :
// http://stackoverflow.com/questions/34875315/implementation-my-own-list-and-iterator-stl-c
template <typename Iter, typename IndexT, typename HashMapT>
class KeyProxyIterator {
public:
typedef KeyProxyIterator<Iter, IndexT, HashMapT> self_type;
typedef uint64_t value_type;//std::iterator_traits<Iter>::value_type::first_type value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef std::forward_iterator_tag iterator_category;
typedef int64_t difference_type;
KeyProxyIterator(Iter first, HashMapT* hm) :
curr_(first), hm_(hm) {}
KeyProxyIterator operator++() { KeyProxyIterator i = *this; curr_++; return i; }
KeyProxyIterator operator++(int) { ++curr_; return *this; }
reference operator*() {
intRep_ = hm_->getKmerFromPos_(*curr_, mer_);
return intRep_;
}
/*
pointer operator->() {
return &(curr_->first);
}
*/
bool operator==(const self_type& rhs) { return curr_ == rhs.curr_; }
bool operator!=(const self_type& rhs) { return curr_ != rhs.curr_; }
bool operator<(const self_type& rhs) { return curr_ < rhs.curr_; }
bool operator<=(const self_type& rhs) { return curr_ <= rhs.curr_; }
private:
rapmap::utils::my_mer mer_;
uint64_t intRep_;
Iter curr_;
HashMapT* hm_{nullptr};
};
template <typename IterT, typename ProxyValueT>
class KVProxy {
public:
typedef KVProxy<IterT, ProxyValueT> self_type;
typedef typename std::iterator_traits<IterT>::value_type ValueT;
typedef std::pair<uint64_t, ValueT> value_type;
typedef std::pair<uint64_t, ProxyValueT>& reference;
typedef std::pair<uint64_t, ProxyValueT>* pointer;
KVProxy(uint64_t mer, IterT it, ValueT len, bool isEnd = false) : curr_(it) {
if(!isEnd) {ProxyValueT x{*it, len}; pair_ = std::make_pair(mer, x);}
}
reference operator*() { return pair_; }
pointer operator->() { return &pair_; }
bool operator==(const self_type& rhs) { return curr_ == rhs.curr_; }
bool operator!=(const self_type& rhs) { return curr_ != rhs.curr_; }
bool operator<(const self_type& rhs) { return curr_ < rhs.curr_; }
bool operator<=(const self_type& rhs) { return curr_ <= rhs.curr_; }
private:
IterT curr_;
std::pair<uint64_t, ProxyValueT> pair_;
};
// Unlike the standard "generic" BooMap, the frugal variant
// *does not* store the key. Rather, it assumes we have a
// pointer to the suffix array, and it "spot checks" the index
// returned by the perfect hash by ensuring that the suffix at
// the corresponding offset starts with the query k-mer.
template <typename KeyT, typename ValueT>
class FrugalBooMap {
public:
using self_type = FrugalBooMap<KeyT, ValueT>;
using HasherT = boomphf::SingleHashFunctor<KeyT>;
using BooPHFT = boomphf::mphf<KeyT, HasherT>;
typedef typename ValueT::index_type IndexT;
using IteratorT = KVProxy<typename std::vector<IndexT>::iterator, ValueT>;
//using IteratorT = typename std::vector<std::pair<KeyT, ValueT>>::iterator;
FrugalBooMap() : built_(false) {}
void setSAPtr(std::vector<IndexT>* saPtr) { saPtr_ = saPtr; }
void setTextPtr(const char* txtPtr, size_t textLen) { txtPtr_ = txtPtr; textLen_ = textLen; }
void add(KeyT&& k, ValueT&& v) {
// In the frugal map, we don't even keep the key!
data_.emplace_back(v.begin());
IndexT l = v.end() - v.begin();
if (l >= std::numeric_limits<uint8_t>::max()) {
overflow_[v.begin()] = l;
lens_.emplace_back(std::numeric_limits<uint8_t>::max());
} else {
lens_.emplace_back(static_cast<uint8_t>(l));
}
}
bool validate_hash(){
for( auto& e : data_ ) {
rapmap::utils::my_mer kmer(txtPtr_ + (*saPtr_)[e]);
auto ind = boophf_->lookup(kmer.word(0));
if (ind >= data_.size()) {
rapmap::utils::my_mer km(txtPtr_ + (*saPtr_)[e]);
std::cerr << "index for " << km << " was " << ind << ", outside bounds of data_ (" << data_.size() << ")\n";
return false;
}
auto mer = getKmerFromInterval_(e);
if (mer != getKmerFromInterval_(data_[ind]) ) {
std::cerr << "lookup of " << mer << " failed!\n";
}
}
return true;
}
bool build(int nthreads=1) {
size_t numElem = data_.size();
KeyProxyIterator<decltype(data_.begin()), IndexT, self_type> kb(data_.begin(), this);
KeyProxyIterator<decltype(data_.begin()), IndexT, self_type> ke(data_.end(), this);
auto keyIt = boomphf::range(kb, ke);
BooPHFT* ph = new BooPHFT(numElem, keyIt, nthreads);
boophf_.reset(ph);
std::cerr << "reordering keys and values to coincide with phf ... ";
reorder_fn_();
//std::cerr << "validating hash\n";
//validate_hash();
std::cerr << "done\n";
std::cerr << "size of overflow table is " << overflow_.size() << '\n';
built_ = true;
return built_;
}
inline IteratorT find(const KeyT& k) {
auto intervalIndex = boophf_->lookup(k);
if (intervalIndex >= data_.size()) return end();
auto ind = data_[intervalIndex];
auto textInd = (*saPtr_)[ind];
rapmap::utils::my_mer m(txtPtr_ + textInd);
// If what we find matches the key, return the iterator
// otherwise we don't have the key (it must have been here if it
// existed).
if (m.word(0) == k) {
IndexT l = *(lens_.begin() + intervalIndex);
if (l == std::numeric_limits<uint8_t>::max()) {
l = overflow_[ind];
}
return IteratorT(m.word(0), data_.begin() + intervalIndex, ind + l);
}
return end();
}
/**
* NOTE: This function *assumes* that the key is in the hash.
* If it isn't, you'll get back a random element!
*/
/*
inline ValueT& operator[](const KeyT& k) {
auto ind = boophf_->lookup(k);
return (ind < data_.size() ? data_[ind].second : data_[0].second);
}
*/
inline IteratorT begin() { return IteratorT(0, data_.begin(), lens_.front()); }
inline IteratorT end() { return IteratorT(0, data_.end(), 0, true); }
inline IteratorT cend() const { return IteratorT(0, data_.cend(), 0, true); }
inline IteratorT cbegin() const { return IteratorT(0, data_.cbegin(), lens_.front()); }
void save(const std::string& ofileBase) {
if (built_) {
std::string hashFN = ofileBase + ".bph";
// save the perfect hash function
{
std::ofstream os(hashFN, std::ios::binary);
if (!os.is_open()) {
std::cerr << "BooM: unable to open output file [" << hashFN << "]; exiting!\n";
std::exit(1);
}
boophf_->save(os);
os.close();
}
// and the values
std::string dataFN = ofileBase + ".val";
{
std::ofstream valStream(dataFN, std::ios::binary);
if (!valStream.is_open()) {
std::cerr << "BooM: unable to open output file [" << dataFN << "]; exiting!\n";
std::exit(1);
}
{
cereal::BinaryOutputArchive outArchive(valStream);
outArchive(data_);
outArchive(lens_);
overflow_.serialize(typename spp_utils::pod_hash_serializer<IndexT, IndexT>(), &valStream);
}
valStream.close();
}
}
}
void load(const std::string& ofileBase) {
std::string hashFN = ofileBase + ".bph";
std::string dataFN = ofileBase + ".val";
if ( !FileExists_(hashFN.c_str()) ) {
std::cerr << "BooM: Looking for perfect hash function file [" << hashFN << "], which doesn't exist! exiting.\n";
std::exit(1);
}
if ( !FileExists_(dataFN.c_str()) ) {
std::cerr << "BooM: Looking for key-value file [" << dataFN << "], which doesn't exist! exiting.\n";
std::exit(1);
}
// load the perfect hash function
{
boophf_.reset(new BooPHFT);
std::ifstream is(hashFN, std::ios::binary);
boophf_->load(is);
is.close();
}
// and the values
{
std::ifstream dataStream(dataFN, std::ios::binary);
{
cereal::BinaryInputArchive inArchive(dataStream);
inArchive(data_);
inArchive(lens_);
overflow_.unserialize(typename spp_utils::pod_hash_serializer<IndexT, IndexT>(), &dataStream);
}
dataStream.close();
}
built_ = true;
}
inline KeyT getKmerFromInterval_(ValueT& ival) {
rapmap::utils::my_mer m;// copy the global mer to get k-mer object
m.from_chars(txtPtr_ + (*saPtr_)[ival.begin()]);
return m.word(0);
}
// variant where we provide an existing mer object
inline KeyT getKmerFromInterval_(ValueT& ival, rapmap::utils::my_mer& m) {
m.from_chars(txtPtr_ + (*saPtr_)[ival.begin()]);
return m.word(0);
}
// variant where we provide an existing mer object
inline KeyT getKmerFromPos_(IndexT pos, rapmap::utils::my_mer& m) {
m.from_chars(txtPtr_ + (*saPtr_)[pos]);
return m.word(0);
}
private:
// Taken from http://stackoverflow.com/questions/12774207/fastest-way-to-check-if-a-file-exist-using-standard-c-c11-c
bool FileExists_(const char *path) {
struct stat fileStat;
if ( stat(path, &fileStat) ) {
return false;
}
if ( !S_ISREG(fileStat.st_mode) ) {
return false;
}
return true;
}
void reorder_fn_() {
/* Adapted from code at: http://blog.merovius.de/2014/08/12/applying-permutation-in-constant.html */
// Note, we can actually do this with out the bitvector by using the high-order bit
// of the start of the suffix array intervals (since they are signed integers and negative
// positions are forbidden).
rapmap::utils::my_mer mer;
std::vector<bool> bits(data_.size(), false);
for ( size_t i = 0; i < data_.size(); ++i ) {
if (!bits[i]) {
decltype(data_.front()) v = data_[i];
decltype(lens_.front()) v2 = lens_[i];
auto j = boophf_->lookup(getKmerFromPos_(data_[i], mer));
while (i != j) {
auto pj = boophf_->lookup(getKmerFromPos_(data_[j], mer));
std::swap(data_[j], v);
std::swap(lens_[j], v2);
bits[j] = 1;
j = pj;
}
data_[i] = v;
lens_[i] = v2;
}
}
}
std::vector<IndexT>* saPtr_;
const char* txtPtr_;
size_t textLen_;
rapmap::utils::my_mer mer_;
bool built_;
// Starting offset in the suffix array
std::vector<IndexT> data_;
// Length of the interval
std::vector<uint8_t> lens_;
// Overflow table if interval is >= std::numeric_limits<uint8_t>::max()
spp::sparse_hash_map<IndexT, IndexT> overflow_;
std::unique_ptr<BooPHFT> boophf_{nullptr};
};
#endif // __BOO_MAP_FRUGAL__
|