File: SACollector.hpp

package info (click to toggle)
rapmap 0.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,428 kB
  • ctags: 3,173
  • sloc: cpp: 16,065; ansic: 3,471; sh: 153; python: 82; makefile: 8
file content (765 lines) | stat: -rw-r--r-- 27,570 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
//
// RapMap - Rapid and accurate mapping of short reads to transcriptomes using
// quasi-mapping.
// Copyright (C) 2015, 2016 Rob Patro, Avi Srivastava, Hirak Sarkar
//
// This file is part of RapMap.
//
// RapMap is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// RapMap is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with RapMap.  If not, see <http://www.gnu.org/licenses/>.
//

#ifndef SA_COLLECTOR_HPP
#define SA_COLLECTOR_HPP

#include "RapMapSAIndex.hpp"
#include "RapMapUtils.hpp"
#include "SASearcher.hpp"

#include <algorithm>
#include <iostream>
#include <iterator>

template <typename RapMapIndexT> class SACollector {
public:
  using OffsetT = typename RapMapIndexT::IndexType;

  /** Disable NIP skipping **/
  void disableNIP() { disableNIP_ = true; }

  /** Enable NIP skipping --- default state **/
  void enableNIP() { disableNIP_ = false; }

  /** Require a coverage fraction of at least req for all reported mappings **/
  void setCoverageRequirement(double req) { covReq_ = req; }

  /** Get the current coverage requirement for mappings (0 means no requirement)
   * **/
  double getCoverageRequirement() const { return covReq_; }

  /** If any hit has a suffix array interval of this length or larger, just skip
   * it **/
  void setMaxInterval(OffsetT maxInterval) { maxInterval_ = maxInterval; }

  /** Get the maximum allowable suffix array interval **/
  OffsetT getMaxInterval(OffsetT maxInterval) const { return maxInterval_; }

  /** Get/Set usage of strict-checking **/
  bool getStrictCheck() const { return strictCheck_; };
  void setStrictCheck(bool sc) { strictCheck_ = sc; }

  /** Construct an SACollector given an index **/
  SACollector(RapMapIndexT* rmi)
      : rmi_(rmi), hashEnd_(rmi->khash.end()), disableNIP_(false), 
        covReq_(0.0), maxInterval_(1000),
        strictCheck_(false) {}

  enum HitStatus { ABSENT = -1, UNTESTED = 0, PRESENT = 1 };
  // Record if k-mers are hits in the
  // fwd direction, rc direction or both
  struct KmerDirScore {
    KmerDirScore(rapmap::utils::my_mer kmerIn, int32_t kposIn,
                 HitStatus fwdScoreIn, HitStatus rcScoreIn)
        : kmer(kmerIn), kpos(kposIn), fwdScore(fwdScoreIn), rcScore(rcScoreIn) {
    }
    KmerDirScore() : kpos(0), fwdScore(UNTESTED), rcScore(UNTESTED) {}
    bool operator==(const KmerDirScore& other) const {
      return kpos == other.kpos;
    }
    bool operator<(const KmerDirScore& other) const {
      return kpos < other.kpos;
    }
    void print() {
      std::cerr << "{ " << kmer.to_str() << ", " << kpos << ", "
                << ((fwdScore) ? "PRESENT" : "ABSENT") << ", "
                << ((rcScore) ? "PRESENT" : "ABSENT") << "}\t";
    }
    rapmap::utils::my_mer kmer;
    int32_t kpos;
    HitStatus fwdScore;
    HitStatus rcScore;
  };

  bool operator()(std::string& read,
                  std::vector<rapmap::utils::QuasiAlignment>& hits,
                  SASearcher<RapMapIndexT>& saSearcher,
                  rapmap::utils::MateStatus mateStatus,
                  bool consistentHits = false) {

    using QuasiAlignment = rapmap::utils::QuasiAlignment;
    using MateStatus = rapmap::utils::MateStatus;
    using SAIntervalHit = rapmap::utils::SAIntervalHit<OffsetT>;

    auto& rankDict = rmi_->rankDict;
    auto& txpStarts = rmi_->txpOffsets;
    auto& SA = rmi_->SA;
    auto& khash = rmi_->khash;
    auto& text = rmi_->seq;
    auto salen = SA.size();
    //auto hashEnd_ = khash.end();
    auto readLen = read.length();
    auto maxDist = 1.5 * readLen;

    auto k = rapmap::utils::my_mer::k();
    auto readStartIt = read.begin();
    auto readEndIt = read.end();

    auto rb = read.begin();
    auto re = rb + k;

    uint32_t fwdHit{0};
    uint32_t rcHit{0};

    size_t fwdCov{0};
    size_t rcCov{0};

    bool foundHit = false;
    bool isRev = false;

    rapmap::utils::my_mer mer;
    rapmap::utils::my_mer rcMer;

    bool useCoverageCheck{disableNIP_ and strictCheck_};

    // This allows implementing our heurisic for comparing
    // forward and reverse-complement strand matches
    std::vector<KmerDirScore> kmerScores;

    // Where we store the SA intervals for forward and rc hits
    std::vector<SAIntervalHit> fwdSAInts;
    std::vector<SAIntervalHit> rcSAInts;

    // Number of nucleotides to skip when encountering a homopolymer k-mer.
    OffsetT homoPolymerSkip = 1; // k / 2;

    // Iterator for k-mer and rc k-mer lookups
    auto merIt = hashEnd_;
    auto rcMerIt = hashEnd_;

    // The position of the k-mer in the read
    size_t pos{0};
    // The position of the next 'N' in the read
    size_t invalidPos{0};

    // Find a hit within the read
    // While we haven't fallen off the end
    while (re <= readEndIt) {

      // Get the k-mer at the current start position.
      // And make sure that it's valid (contains no Ns).
      pos = std::distance(readStartIt, rb);

      // See if this k-mer would contain an N
      // only check if we don't yet know that there are no remaining
      // Ns
      if (invalidPos != std::string::npos) {
        invalidPos = read.find_first_of("nN", pos);
        if (invalidPos <= pos + k) {
          rb = read.begin() + invalidPos + 1;
          re = rb + k;
          continue;
        }
      }

      // If the next k-bases are valid, get the k-mer and
      // reverse complement k-mer
      mer = rapmap::utils::my_mer(read.c_str() + pos);
      if (mer.is_homopolymer()) {
        rb += homoPolymerSkip;
        re += homoPolymerSkip;
        /* Walk base-by-base rather than skipping
        // If the first N is within k bases, then this k-mer is invalid
        if (invalidPos < pos + k) {
            // Skip to the k-mer starting at the next position
            // (i.e. right past the N)
            rb = read.begin() + invalidPos + 1;
            re = rb + k;
            // Go to the next iteration of the while loop
            continue;
        }
        */
        continue;
      }
      rcMer = mer.get_reverse_complement();

      // See if we can find this k-mer in the hash
      merIt = khash.find(mer.word(0));//get_bits(0, 2 * k));
      rcMerIt = khash.find(rcMer.word(0));//rcMer.get_bits(0, 2 * k));

      // If we can find the k-mer in the hash
      if (merIt != hashEnd_) {
        if (strictCheck_) {
          ++fwdHit;
          // If we also match this k-mer in the rc direction
          if (rcMerIt != hashEnd_) {
            ++rcHit;
            kmerScores.emplace_back(mer, pos, PRESENT, PRESENT);
          } else { // Otherwise it doesn't match in the rc direction
            kmerScores.emplace_back(mer, pos, PRESENT, ABSENT);
          }
        } else { // no strict check
          ++fwdHit;
          if (rcMerIt != hashEnd_) {
            ++rcHit;
          }
        }
      }

      // See if the reverse complement k-mer is in the hash
      if (rcMerIt != hashEnd_) {
        // The original k-mer didn't match in the foward direction
        if (!fwdHit) {
          ++rcHit;
          if (strictCheck_) {
            kmerScores.emplace_back(mer, pos, ABSENT, PRESENT);
          }
        }
      }

      // If we had a hit with either k-mer then we can
      // break out of this loop to look for the next informative position
      if (fwdHit + rcHit > 0) {
        foundHit = true;
        break;
      }
      ++rb;
      ++re;
    }

    // If we went the entire length of the read without finding a hit
    // then we can bail.
    if (!foundHit) {
      return false;
    }

    bool didCheckFwd{false};
    // If we had a hit on the forward strand
    if (fwdHit) {
      didCheckFwd = true;
      getSAHits_(saSearcher,
                 read,             // the read
                 rb,               // where to start the search
                 &(merIt->second), // pointer to the search interval
                 fwdCov, fwdHit, rcHit, fwdSAInts, kmerScores, false);
    }

    bool checkRC = useCoverageCheck ? (rcHit > 0) : (rcHit >= fwdHit);
    // If we had a hit on the reverse complement strand
    if (checkRC) {
      rapmap::utils::reverseRead(read, rcBuffer_);
      getSAHits_(saSearcher,
                 rcBuffer_,         // the read
                 rcBuffer_.begin(), // where to start the search
                 nullptr,           // pointer to the search interval
                 rcCov, rcHit, fwdHit, rcSAInts, kmerScores, true);
    }

    // Now, if we *didn't* check the forward strand at first, but we encountered
    // fwd hits
    // while looking at the RC strand, then check the fwd strand now
    bool checkFwd = useCoverageCheck ? (fwdHit > 0) : (fwdHit >= rcHit);
    if (!didCheckFwd and checkFwd) {
      didCheckFwd = true;
      getSAHits_(saSearcher,
                 read,         // the read
                 read.begin(), // where to start the search
                 nullptr,      // pointer to the search interval
                 fwdCov, fwdHit, rcHit, fwdSAInts, kmerScores, false);
    }

    if (strictCheck_) {
      // If we're computing coverage, then we can make use of that info here
      //useCoverageCheck = false;
      if (useCoverageCheck) {
        if (fwdCov > rcCov) {
          rcSAInts.clear();
        } else if (rcCov > fwdCov) {
          fwdSAInts.clear();
        }
      } else { // use the k-mer "spot check"
        // The first two conditions shouldn't happen
        // but I'm just being paranoid here
        if (fwdHit > 0 and rcHit == 0) {
          rcSAInts.clear();
        } else if (rcHit > 0 and fwdHit == 0) {
          fwdSAInts.clear();
        } else {
          std::sort(kmerScores.begin(), kmerScores.end());
          auto e = std::unique(kmerScores.begin(), kmerScores.end());
          // Compute the score for the k-mers we need to
          // test in both the forward and rc directions.
          int32_t fwdScore{0};
          int32_t rcScore{0};
          // For every kmer score structure
          // std::cerr << "[\n";
          for (auto kmsIt = kmerScores.begin(); kmsIt != e;
               ++kmsIt) { //: kmerScores) {
            auto& kms = *kmsIt;
            // If the forward k-mer is untested, then test it
            if (kms.fwdScore == UNTESTED) {
              auto merIt = khash.find(kms.kmer.word(0));//get_bits(0, 2 * k));
              kms.fwdScore = (merIt != hashEnd_) ? PRESENT : ABSENT;
            }
            // accumulate the score
            fwdScore += kms.fwdScore;

            // If the rc k-mer is untested, then test it
            if (kms.rcScore == UNTESTED) {
              rcMer = kms.kmer.get_reverse_complement();
              auto rcMerIt = khash.find(rcMer.word(0));//get_bits(0, 2 * k));
              kms.rcScore = (rcMerIt != hashEnd_) ? PRESENT : ABSENT;
            }
            // accumulate the score
            rcScore += kms.rcScore;
            // kms.print();
            // std::cerr << "\n";
          }
          // std::cerr << "]\n";
          // If the forward score is strictly greater
          // then get rid of the rc hits.
          if (fwdScore > rcScore) {
            rcSAInts.clear();
          } else if (rcScore > fwdScore) {
            // If the rc score is strictly greater
            // get rid of the forward hits
            fwdSAInts.clear();
          }
        }
      }
    }

    // Coverage requirements only make sense if
    // we have disabled NIP skipping.
    if (covReq_ > 0.0 and disableNIP_) {
      double fwdFrac{0.0};
      double rcFrac{0.0};
      if (fwdSAInts.size() > 0) {
        fwdFrac = fwdCov / static_cast<double>(readLen);
        if (fwdFrac < covReq_) {
          fwdSAInts.clear();
        }
      }
      if (rcSAInts.size() > 0) {
        rcFrac = rcCov / static_cast<double>(readLen);
        if (rcFrac < covReq_) {
          rcSAInts.clear();
        }
      }
    }

    auto fwdHitsStart = hits.size();
    // If we had > 1 forward hit
    if (fwdSAInts.size() > 1) {
      auto processedHits = rapmap::hit_manager::intersectSAHits(
          fwdSAInts, *rmi_, readLen, consistentHits);
      rapmap::hit_manager::collectHitsSimpleSA(processedHits, readLen, maxDist,
                                               hits, mateStatus);
    } else if (fwdSAInts.size() == 1) { // only 1 hit!
      auto& saIntervalHit = fwdSAInts.front();
      auto initialSize = hits.size();
      for (OffsetT i = saIntervalHit.begin; i != saIntervalHit.end; ++i) {
        auto globalPos = SA[i];
        auto txpID = rmi_->transcriptAtPosition(globalPos);
        // the offset into this transcript
        auto pos = globalPos - txpStarts[txpID];
        int32_t hitPos = pos - saIntervalHit.queryPos;
        hits.emplace_back(txpID, hitPos, true, readLen);
        hits.back().mateStatus = mateStatus;
      }
      // Now sort by transcript ID (then position) and eliminate
      // duplicates
      auto sortStartIt = hits.begin() + initialSize;
      auto sortEndIt = hits.end();
      std::sort(sortStartIt, sortEndIt,
                [](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
                  if (a.tid == b.tid) {
                    return a.pos < b.pos;
                  } else {
                    return a.tid < b.tid;
                  }
                });
      auto newEnd = std::unique(
          hits.begin() + initialSize, hits.end(),
          [](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
            return a.tid == b.tid;
          });
      hits.resize(std::distance(hits.begin(), newEnd));
    }
    auto fwdHitsEnd = hits.size();

    auto rcHitsStart = fwdHitsEnd;
    // If we had > 1 rc hit
    if (rcSAInts.size() > 1) {
      auto processedHits = rapmap::hit_manager::intersectSAHits(
          rcSAInts, *rmi_, readLen, consistentHits);
      rapmap::hit_manager::collectHitsSimpleSA(processedHits, readLen, maxDist,
                                               hits, mateStatus);
    } else if (rcSAInts.size() == 1) { // only 1 hit!
      auto& saIntervalHit = rcSAInts.front();
      auto initialSize = hits.size();
      for (OffsetT i = saIntervalHit.begin; i != saIntervalHit.end; ++i) {
        auto globalPos = SA[i];
        auto txpID = rmi_->transcriptAtPosition(globalPos);
        // the offset into this transcript
        auto pos = globalPos - txpStarts[txpID];
        int32_t hitPos = pos - saIntervalHit.queryPos;
        hits.emplace_back(txpID, hitPos, false, readLen);
        hits.back().mateStatus = mateStatus;
      }
      // Now sort by transcript ID (then position) and eliminate
      // duplicates
      auto sortStartIt = hits.begin() + rcHitsStart;
      auto sortEndIt = hits.end();
      std::sort(sortStartIt, sortEndIt,
                [](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
                  if (a.tid == b.tid) {
                    return a.pos < b.pos;
                  } else {
                    return a.tid < b.tid;
                  }
                });
      auto newEnd = std::unique(
          sortStartIt, sortEndIt,
          [](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
            return a.tid == b.tid;
          });
      hits.resize(std::distance(hits.begin(), newEnd));
    }
    auto rcHitsEnd = hits.size();

    // If we had both forward and RC hits, then merge them
    if ((fwdHitsEnd > fwdHitsStart) and (rcHitsEnd > rcHitsStart)) {
      // Merge the forward and reverse hits
      std::inplace_merge(
          hits.begin() + fwdHitsStart, hits.begin() + fwdHitsEnd,
          hits.begin() + rcHitsEnd,
          [](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
            return a.tid < b.tid;
          });
      // And get rid of duplicate transcript IDs
      auto newEnd = std::unique(
          hits.begin() + fwdHitsStart, hits.begin() + rcHitsEnd,
          [](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
            return a.tid == b.tid;
          });
      hits.resize(std::distance(hits.begin(), newEnd));
    }
    // Return true if we had any valid hits and false otherwise.
    return foundHit;
  }

private:
  // spot-check k-mers to see if there are forward or rc hits
  template <typename IteratorT>
  inline void
  spotCheck_(rapmap::utils::my_mer mer,
             size_t pos, // the position of the k-mer on the read
             size_t readLen,
             IteratorT* merItPtr,           // nullptr if we haven't checked yet
             IteratorT* complementMerItPtr, // nullptr if we haven't checked yet
             bool isRC, // is this being called from the RC of the read
             uint32_t& strandHits, uint32_t& otherStrandHits,
             std::vector<KmerDirScore>& kmerScores
             ) {
    IteratorT merIt = hashEnd_;
    IteratorT complementMerIt = hashEnd_;
    auto& khash = rmi_->khash;
    //auto hashEnd_ = khash.end();
    auto k = rapmap::utils::my_mer::k();

    auto complementMer = mer.get_reverse_complement();

    if (merItPtr == nullptr) {
      // We haven't tested this, so do that here
      merIt = khash.find(mer.word(0));//get_bits(0, 2 * k));
    } else {
      // we already have this
      merIt = *merItPtr;
    }

    if (complementMerItPtr == nullptr) {
      // We haven't tested this, so do that here
      complementMerIt = khash.find(complementMer.word(0));//get_bits(0, 2 * k));
    } else {
      // we already have this
      complementMerIt = *complementMerItPtr;
    }

    HitStatus status{UNTESTED};
    HitStatus complementStatus{UNTESTED};

    if (merIt != hashEnd_) {
      ++strandHits;
      status = PRESENT;
    } else {
      status = ABSENT;
    }
    if (complementMerIt != hashEnd_) {
      ++otherStrandHits;
      complementStatus = PRESENT;
    } else {
      complementStatus = ABSENT;
    }

    HitStatus fwdStatus = isRC ? complementStatus : status;
    HitStatus rcStatus = isRC ? status : complementStatus;

    if (strictCheck_) {
      // If we're on the reverse complement strand, then
      // we have to adjust kmerPos to be with respect to the
      // forward strand.
      if (isRC) {
        auto kp = pos;
        pos = readLen - kp - k;
        mer = complementMer;
      }
      kmerScores.emplace_back(mer, pos, fwdStatus, rcStatus);
    }
  }
  /* 
  // Attempts to find the next valid k-mer (a k-mer that doesn't contain an 'N' and is 
  // not a homopolymer).  If no such k-mer exists within the read, then it returns false. 
  inline bool getNextValidKmer_(std, size_t& pos, rapmap::utils::my_mer& mer) {
      bool validMer = mer.from_chars(read + pos);
      // if this kmer contains an 'N' then validMer is false, else true
  }
  */

  inline void getSAHits_(
      SASearcher<RapMapIndexT>& saSearcher, std::string& read,
      std::string::iterator startIt,
      rapmap::utils::SAInterval<OffsetT>* startInterval, size_t& cov,
      uint32_t& strandHits, uint32_t& otherStrandHits,
      std::vector<rapmap::utils::SAIntervalHit<OffsetT>>& saInts,
      std::vector<KmerDirScore>& kmerScores,
      bool isRC // true if read is the reverse complement, false otherwise
      ) {
    using SAIntervalHit = rapmap::utils::SAIntervalHit<OffsetT>;
    auto& khash = rmi_->khash;

    //auto hashEnd_ = khash.end();
    decltype(hashEnd_)* nullItPtr = nullptr;

    auto readLen = read.length();
    auto readStartIt = read.begin();
    auto readEndIt = read.end();
    OffsetT matchedLen{0};

    auto k = rapmap::utils::my_mer::k();
    auto skipOverlapMMP = k - 1;
    auto skipOverlapNIP = k - 1;
    OffsetT homoPolymerSkip = 1;//k / 2;

    auto rb = readStartIt;
    auto re = rb + k;
    OffsetT lb, ub;
    size_t invalidPos{0};

    rapmap::utils::my_mer mer, complementMer;
    auto merIt = hashEnd_;
    auto complementMerIt = hashEnd_;
    size_t pos{0};
    size_t sampFactor{1};
    bool lastSearch{false};
    size_t prevMMPEnd{0};
    bool validMer{true};

    // If we have some place to start that we have already computed
    // then use it.
    bool canSkipSetup{startInterval != nullptr};

    if (canSkipSetup) {
      rb = startIt;
      re = rb + k;
      pos = std::distance(readStartIt, rb);
      invalidPos = pos;
      lb = startInterval->begin();
      ub = startInterval->end();
      goto skipSetup;
    }

    while (re <= readEndIt) {
      // The distance from the beginning of the read to the
      // start of the k-mer
      pos = std::distance(readStartIt, rb);
      validMer = mer.from_chars(read.c_str() + pos);
      // Get the next valid k-mer at some position >= pos
      //validMer = getNextValidKmer_(read, pos, mer);
      //if (!validMer) { return; }

      // If this k-mer contains an 'N', then find the position
      // of this character and skip one past it.
      if (!validMer) {
        invalidPos = read.find_first_of("nN", pos);
        // If the first N is within k bases, then this k-mer is invalid
        if (invalidPos < pos + k) {
          // Skip to the k-mer starting at the next position
          // (i.e. right past the N)
          rb = read.begin() + invalidPos + 1;
          re = rb + k;
          // Go to the next iteration of the while loop
          continue;
        }
      }
      // If we got here, we have a k-mer without an 'N'

      // If this is a homopolymer, then skip it
      if (mer.is_homopolymer()) {
        rb += homoPolymerSkip; 
        re += homoPolymerSkip;
        /*
        rb += homoPolymerSkip;
        re += homoPolymerSkip;
        // If the default skip jumps us off the end of the read
        // then try to check the last k-mer
        if (re >= readEndIt and !lastSearch) {
          rb = readEndIt - k;
          re = rb + k;
          // but give up if that's still a homopolymer
          lastSearch = true;
        }
        */
        continue;
      }
      
      // If it's not a homopolymer, then get the complement
      // k-mer and query both in the hash.
      complementMer = mer.get_reverse_complement();
      merIt = khash.find(mer.word(0));//get_bits(0, 2 * k));

      // If we found the k-mer
      if (merIt != hashEnd_) {
        spotCheck_(mer, pos, readLen, &merIt, nullItPtr, isRC, strandHits,
                   otherStrandHits, kmerScores);

        lb = merIt->second.begin();
        ub = merIt->second.end();
      skipSetup:
        // lb must be 1 *less* then the current lb
        // We can't move any further in the reverse complement direction
        lb = std::max(static_cast<OffsetT>(0), lb - 1);
        std::tie(lb, ub, matchedLen) =
            saSearcher.extendSearchNaive(lb, ub, k, rb, readEndIt);

        OffsetT diff = ub - lb;
        if (ub > lb and diff < maxInterval_) {
          uint32_t queryStart =
              static_cast<uint32_t>(std::distance(readStartIt, rb));
          saInts.emplace_back(lb, ub, matchedLen, queryStart, isRC);

          size_t matchOffset = std::distance(readStartIt, rb);
          size_t correction = 0;

          // NOTE: prevMMPEnd points 1 position past the last *match* of the
          // previous MMP (i.e. it points to the *first mismatch*).  This is
          // why we ignore the case where prevMMPEnd == matchOffset, and why
          // we don't have to add 1 to correction.
          if (prevMMPEnd > matchOffset) {
            correction = prevMMPEnd - matchOffset;
          }
          // Update the coverage and position of the last MMP match
          cov += (matchedLen - correction);
          prevMMPEnd = matchOffset + matchedLen;

          // If we didn't end the match b/c we exhausted the query
          // test the mismatching k-mer in the other strand
          if (rb + matchedLen < readEndIt) {
            uint32_t kmerPos = static_cast<uint32_t>(
                std::distance(readStartIt, rb + matchedLen - skipOverlapMMP));
            bool validNucs = mer.from_chars(read.c_str() + kmerPos);
            if (validNucs) {
              /*
              // since the MMP *ended* before the end of the read, we assume
              // that the k-mer one past the MMP is a mismatch (i.e is ABSENT)
              // we avoid looking it up in spotCheck_ by simply passing a pointer
              // to the end of the k-mer hash, which will treat this mer as ABSENT.
              auto endItPtr = &hashEnd_;
              */
              // Even though the MMP *ended* before the end of the read, we're still
              // going to check the mismatching k-mer in both directions to ensure that
              // it doesn't appear somewhere else in the forward direction
              spotCheck_(mer, kmerPos, readLen, nullItPtr, nullItPtr, isRC,
                         strandHits, otherStrandHits, kmerScores);
            }
          } // we didn't end the search by falling off the end
        }   // This hit was worth recording --- occurred fewer then maxInterval_
            // times

        // If we've previously declared that the search that just occurred was
        // our last, then we're done!
        if (lastSearch) {
          return;
        }

        // Otherwise, figure out how we should continue the search.
        auto mismatchIt = rb + matchedLen;
        // If we reached the end of the read, then we're done.
        if (mismatchIt >= readEndIt) {
          return;
        }

        auto remainingDistance = std::distance(mismatchIt, readEndIt);
        auto lce = disableNIP_ ? matchedLen
                               : saSearcher.lce(lb, ub - 1, matchedLen,
                                                remainingDistance);

        // Where we would jump if we just used the MMP
        auto skipMatch = mismatchIt - skipOverlapMMP;
        // if (skipMatch + k )
        // Where we would jump if we used the LCE
        auto skipLCE = rb + lce - skipOverlapNIP;
        // Pick the maximum of the two
        auto maxSkip = std::max(skipMatch, skipLCE);
        // And that's where our new search will start
        rb = maxSkip;

        // If NIP skipping is *enabled*, and we got to the current position
        // by doing an LCE query, then we allow ourselves to *double check*
        // by querying the last k-mer in the read.
        // Otherwise, we just take the skip we're given.
        if (!disableNIP_ and (lce > matchedLen)) {
          if (readLen > k) {
            rb = std::min(readEndIt - k, rb);
          }
        }

        re = rb + k;

        // If the search ends at the end of the read, then
        // set the flag that we need not try after this.
        if (re == readEndIt) {
          lastSearch = true;
        }

      } else { // If we couldn't match this k-mer, move on to the next.
          
        // &merIt should point to the end of the k-mer hash,
        // complementMerItPtr is null because we want to spot-check the complement k-mer.
        spotCheck_(mer, pos, readLen, &merIt, nullItPtr, isRC, strandHits,
                   otherStrandHits, kmerScores);
        rb += sampFactor;
        re = rb + k;
      }
    }
  }

  RapMapIndexT* rmi_;
  decltype(rmi_->khash.end()) hashEnd_;
  bool disableNIP_;
  double covReq_;
  OffsetT maxInterval_;
  bool strictCheck_;
  std::string rcBuffer_;
};

#endif // SA_COLLECTOR_HPP