1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
#include "HitManager.hpp"
#include "BooMap.hpp"
#include <type_traits>
namespace rapmap {
namespace hit_manager {
// Return hits from processedHits where position constraints
// match maxDist
bool collectHitsSimple(std::vector<ProcessedHit>& processedHits,
uint32_t readLen,
uint32_t maxDist,
std::vector<QuasiAlignment>& hits,
MateStatus mateStatus){
bool foundHit{false};
// One processed hit per transcript
for (auto& ph : processedHits) {
auto tid = ph.tid;
std::sort(ph.tqvec.begin(), ph.tqvec.end(),
[](const TxpQueryPos& x, const TxpQueryPos& y) -> bool {
return x.txpPosInfo.pos() < y.txpPosInfo.pos();
});
auto& firstHit = ph.tqvec[0];
bool hitRC = firstHit.queryRC;
bool txpRC = ph.tqvec[0].txpPosInfo.isRC();
bool isFwd = (hitRC == txpRC);
int32_t hitPos = firstHit.txpPosInfo.pos() - firstHit.queryPos;
// determine forward
hits.emplace_back(tid, hitPos, isFwd, readLen);
hits.back().mateStatus = mateStatus;
}
return true;
}
// Return hits from processedHits where position constraints
// match maxDist
bool collectHitsSimpleSA(SAHitMap& processedHits,
uint32_t readLen,
uint32_t maxDist,
std::vector<QuasiAlignment>& hits,
MateStatus mateStatus){
bool foundHit{false};
// One processed hit per transcript
auto startOffset = hits.size();
for (auto& ph : processedHits) {
// If this is an *active* position list
if (ph.second.active) {
auto tid = ph.first;
auto minPosIt = std::min_element(ph.second.tqvec.begin(),
ph.second.tqvec.end(),
[](const SATxpQueryPos& a, const SATxpQueryPos& b) -> bool {
return a.pos < b.pos;
});
bool hitRC = minPosIt->queryRC;
int32_t hitPos = minPosIt->pos - minPosIt->queryPos;
bool isFwd = !hitRC;
hits.emplace_back(tid, hitPos, isFwd, readLen);
hits.back().mateStatus = mateStatus;
}
}
// if SAHitMap is sorted, no need to sort here
/*
std::sort(hits.begin() + startOffset, hits.end(),
[](const QuasiAlignment& a, const QuasiAlignment& b) -> bool {
return a.tid < b.tid;
});
*/
return true;
}
// Return hits from processedHits where position constraints
// match maxDist
bool collectHitsSimpleSA2(std::vector<ProcessedSAHit>& processedHits,
uint32_t readLen,
uint32_t maxDist,
std::vector<QuasiAlignment>& hits,
MateStatus mateStatus){
bool foundHit{false};
// One processed hit per transcript
for (auto& ph : processedHits) {
// If this is an *active* position list
if (ph.active) {
auto tid = ph.tid;
auto minPosIt =
std::min_element(ph.tqvec.begin(),
ph.tqvec.end(),
[](const SATxpQueryPos& a, const SATxpQueryPos& b) -> bool {
return a.pos < b.pos;
});
bool hitRC = minPosIt->queryRC;
int32_t hitPos = minPosIt->pos - minPosIt->queryPos;
bool isFwd = !hitRC;
hits.emplace_back(tid, hitPos, isFwd, readLen);
hits.back().mateStatus = mateStatus;
}
}
return true;
}
// Intersects the hit h2 with outHits.
// This will modify outHits so that the tqvec field of the
// entries in outHits that are labeled by the transcripts in
// which h2 appears will have an iterator to the beginning of
// the position list for h2.
void intersectWithOutput(HitInfo& h2, RapMapIndex& rmi,
std::vector<ProcessedHit>& outHits) {
// Convenient bindings for variables we'll use
auto& eqClasses = rmi.eqClassList;
auto& eqClassLabels = rmi.eqLabelList;
auto& posList = rmi.posList;
// Iterator to the beginning and end of the output hits
auto outHitIt = outHits.begin();
auto outHitEnd = outHits.end();
// Equiv. class for h2
auto& eqClassRight = eqClasses[h2.kinfo->eqId];
// Iterator into, length of and end of the positon list for h2
auto rightPosIt = posList.begin() + h2.kinfo->offset;
auto rightPosLen = h2.kinfo->count;
auto rightPosEnd = rightPosIt + rightPosLen;
// Iterator into, length of and end of the transcript list for h2
auto rightTxpIt = eqClassLabels.begin() + eqClassRight.txpListStart;
auto rightTxpListLen = eqClassRight.txpListLen;
auto rightTxpEnd = rightTxpIt + rightTxpListLen;
auto rightQueryPos = h2.queryPos;
auto rightQueryRC = h2.queryRC;
PositionListHelper rightPosHelper(rightPosIt, posList.end());
uint32_t leftTxp, rightTxp;
while (outHitIt != outHitEnd and rightTxpIt != rightTxpEnd) {
// Get the current transcript ID for the left and right eq class
leftTxp = outHitIt->tid;
rightTxp = *rightTxpIt;
// If we need to advance the left txp, do it
if (leftTxp < rightTxp) {
// Advance to the next transcript in the
// equivalence class label
++outHitIt;
} else {
// If the transcripts are equal (i.e. leftTxp >= rightTxp and !(rightTxp < leftTxp))
// Then see if there are any hits here.
if (!(rightTxp < leftTxp)) {
// Add the position list iterator and query pos for the
// hit from h2 to the back of outHits' tqvec.
outHitIt->tqvec.emplace_back(rightPosHelper, rightQueryPos, rightQueryRC);
++outHitIt;
}
// advance the hit we're intersecting to the next transcript
rightPosHelper.advanceToNextTranscript();
// Advance the right transcript id regardless of whether
// we found a hit or not.
++rightTxpIt;
}
}
}
/** from http://en.cppreference.com/w/cpp/algorithm/lower_bound **/
template <typename ForwardIt>
ForwardIt binarySearch(
ForwardIt first,
ForwardIt last,
uint32_t value) {
ForwardIt it;
typename std::iterator_traits<ForwardIt>::difference_type count, step;
count = std::distance(first, last);
while (count > 0) {
it = first;
step = count / 2;
std::advance(it, step);
if (*it < value) {
first = ++it;
count -= step + 1;
}
else {
count = step;
}
}
return first;
}
/** from http://en.cppreference.com/w/cpp/algorithm/find **/
template<class InputIt>
InputIt linearSearch(InputIt first, InputIt last, uint32_t value) {
for (; first != last; ++first) {
if (*first == value) {
return first;
}
}
return last;
}
/** adapted from https://schani.wordpress.com/2010/04/30/linear-vs-binary-search/ **/
uint32_t binarySearchFast(const std::vector<uint32_t>& arr, size_t n, uint32_t key) {
uint32_t min = 0, max = n;
while (min < max) {
int middle = (min + max) >> 1;
min = (key > arr[middle]) ? middle+1 : min;
max = (key <= arr[middle]) ? middle : max;
}
return (arr[min] == key) ? min : std::numeric_limits<uint32_t>::max();
}
/** adapted from https://schani.wordpress.com/2010/04/30/linear-vs-binary-search/ **/
// ASSUMES SENTINEL VALUE (value in array >= key *MUST* exist)
uint32_t linearSearchUnrolled16(const std::vector<uint32_t>& arr, size_t n, uint32_t key) {
uint32_t i{0};
for (;;) {
if ( arr[i + 0] >= key) return i + 0;
if ( arr[i + 1] >= key) return i + 1;
if ( arr[i + 2] >= key) return i + 2;
if ( arr[i + 3] >= key) return i + 3;
if ( arr[i + 4] >= key) return i + 4;
if ( arr[i + 5] >= key) return i + 5;
if ( arr[i + 6] >= key) return i + 6;
if ( arr[i + 7] >= key) return i + 7;
if ( arr[i + 8] >= key) return i + 8;
if ( arr[i + 9] >= key) return i + 9;
if ( arr[i + 10] >= key) return i + 10;
if ( arr[i + 11] >= key) return i + 11;
if ( arr[i + 12] >= key) return i + 12;
if ( arr[i + 13] >= key) return i + 13;
if ( arr[i + 14] >= key) return i + 14;
if ( arr[i + 15] >= key) return i + 15;
i += 16;
}
}
template <typename RapMapIndexT>
void intersectSAIntervalWithOutput2(SAIntervalHit<typename RapMapIndexT::IndexType>& h,
RapMapIndexT& rmi,
//fbs::eytzinger_array_bfp<uint32_t, uint32_t, true>& outTxps,
//std::vector<uint32_t>& outTxps,
SAProcessedHitVec& processedHits) {
// Convenient bindings for variables we'll use
auto& SA = rmi.SA;
auto& txpIDs = rmi.positionIDs;
auto& txpStarts = rmi.txpOffsets;
auto& outStructs = processedHits.hits;
auto& outTxps = processedHits.txps;
// Iterator to the beginning and end of the output hits
auto txpIt = processedHits.txps.begin();
auto txpEnd = processedHits.txps.end();
uint32_t arraySize = processedHits.txps.size();
uint32_t rightTxp;
uint32_t pos;
//decltype(processedHits.txps)::iterator searchIt = txpEnd;
uint32_t searchInd{0};
for (auto i = h.begin; i < h.end; ++i) {
rightTxp = txpIDs[SA[i]];
if (arraySize > 64) {
searchInd = binarySearchFast(outTxps, arraySize, rightTxp);
} else {
searchInd = linearSearchUnrolled16(outTxps, arraySize, rightTxp);
}
// If we found this transcript (make sure it's not the sentinel) then
// add it to the list.
if ( searchInd < arraySize - 1 ) {
//auto offset = std::distance(txpIt, searchIt);
pos = static_cast<uint32_t>(SA[i]) - txpStarts[rightTxp];
outStructs[searchInd].tqvec.emplace_back(pos, h.queryPos, h.queryRC);
}
/*
auto searchIdx = outTxps.search(rightTxp);
if (searchIdx < arraySize) {
pos = static_cast<uint32_t>(SA[i]) - txpStarts[rightTxp];
outStructs[searchIdx].tqvec.emplace_back(pos, h.queryPos, h.queryRC);
}
*/
}
}
/*
void intersectSAIntervalWithOutput3(SAIntervalHit& h,
RapMapSAIndex& rmi,
SAProcessedHitVec& outHits) {
// Convenient bindings for variables we'll use
auto& SA = rmi.SA;
auto& txpIDs = rmi.positionIDs;
auto& txpStarts = rmi.txpOffsets;
// Iterator to the beginning and end of the output hits
auto outHitIt = outHits.begin();
auto outHitEnd = outHits.end();
// Make a vector of iterators into the right interval
std::vector<int*> rightHitIterators;
rightHitIterators.reserve(h.span());
for (auto i = h.begin; i < h.end; ++i) {
rightHitIterators.emplace_back(&SA[i]);
}
// Sort the iterators by their transcript ID
std::sort(rightHitIterators.begin(), rightHitIterators.end(),
[&txpIDs](const int* a, const int* b) -> bool {
return txpIDs[*a] < txpIDs[*b];
});
auto rightIntHit = rightHitIterators.begin();
auto rightIntHitEnd = rightHitIterators.end();
uint32_t leftTxp, rightTxp;
uint32_t pos;
while (outHitIt != outHitEnd and rightIntHit != rightIntHitEnd) {
// Get the current transcript ID for the left and right eq class
leftTxp = outHitIt->tid;
rightTxp = txpIDs[(*(*rightIntHit))];
// If we need to advance the left txp, do it
if (leftTxp < rightTxp) {
// Advance to the next transcript in the
// equivalence class label
++outHitIt;
} else {
// If the transcripts are equal (i.e. leftTxp >= rightTxp and !(rightTxp < leftTxp))
// Then see if there are any hits here.
if (!(rightTxp < leftTxp)) {
// Add the position list iterator and query pos for the
// hit from h2 to the back of outHits' tqvec.
pos = static_cast<uint32_t>(*(*rightIntHit)) - txpStarts[rightTxp];
outHitIt->tqvec.emplace_back(pos, h.queryPos, h.queryRC);
//++outHitIt;
}
++rightIntHit;
}
}
}
*/
template <typename RapMapIndexT>
void intersectSAIntervalWithOutput(SAIntervalHit<typename RapMapIndexT::IndexType>& h,
RapMapIndexT& rmi,
uint32_t intervalCounter,
SAHitMap& outHits) {
using OffsetT = typename RapMapIndexT::IndexType;
// Convenient bindings for variables we'll use
auto& SA = rmi.SA;
//auto& txpIDs = rmi.positionIDs;
auto& rankDict = rmi.rankDict;
auto& txpStarts = rmi.txpOffsets;
// Walk through every hit in the new interval 'h'
for (OffsetT i = h.begin; i != h.end; ++i) {
//auto txpID = txpIDs[SA[i]];
// auto txpID = rankDict.Rank(SA[i], 1);
auto txpID = rmi.transcriptAtPosition(SA[i]);
auto txpListIt = outHits.find(txpID);
// If we found this transcript
// Add this position to the list
if (txpListIt != outHits.end()) {
txpListIt->second.numActive += (txpListIt->second.numActive == intervalCounter - 1) ? 1 : 0;
if (txpListIt->second.numActive == intervalCounter) {
auto globalPos = SA[i];
auto localPos = globalPos - txpStarts[txpID];
txpListIt->second.tqvec.emplace_back(localPos, h.queryPos, h.queryRC);
}
}
}
}
std::vector<ProcessedHit> intersectHits(
std::vector<HitInfo>& inHits,
RapMapIndex& rmi
) {
// Each inHit is a HitInfo structure that contains
// an iterator to the KmerInfo for this k-mer, the k-mer ID,
// and the query position where this k-mer appeared.
// We want to find the transcripts that appear in *every*
// hit. Further, for each transcript, we want to
// know the k-mers that appear in this txp.
// Check this --- we should never call this function
// with less than 2 hits.
if (inHits.size() < 2) {
std::cerr << "intersectHits() called with < 2 k-mer "
" hits; this shouldn't happen\n";
return {};
}
auto& eqClasses = rmi.eqClassList;
auto& eqClassLabels = rmi.eqLabelList;
auto& posList = rmi.posList;
// The HitInfo with the smallest equivalence class
// i.e. label with the fewest transcripts.
HitInfo* minHit = &inHits[0];
for (auto& h : inHits) {
if (h.kinfo->count < minHit->kinfo->count) {
minHit = &h;
}
}
std::vector<ProcessedHit> outHits;
outHits.reserve(minHit->kinfo->count);
// =========
{ // Add the info from minHit to outHits
// Equiv. class for minHit
auto& eqClass = eqClasses[minHit->kinfo->eqId];
// Iterator into, length of and end of the positon list
auto posIt = posList.begin() + minHit->kinfo->offset;
auto posLen = minHit->kinfo->count;
auto posEnd = posIt + posLen;
// Iterator into, length of and end of the transcript list
auto txpIt = eqClassLabels.begin() + eqClass.txpListStart;
auto txpListLen = eqClass.txpListLen;
auto txpEnd = txpIt + txpListLen;
PositionListHelper posHelper(posIt, posList.end());
while (txpIt != txpEnd) {
auto tid = *txpIt;
outHits.emplace_back(tid, posHelper, minHit->queryPos, minHit->queryRC);
posHelper.advanceToNextTranscript();
++txpIt;
}
}
// =========
// Now intersect everything in inHits (apart from minHits)
// to get the final set of mapping info.
for (auto& h : inHits) {
if (&h != minHit) { // don't intersect minHit with itself
intersectWithOutput(h, rmi, outHits);
}
}
size_t requiredNumHits = inHits.size();
// do we need stable_partition? --- don't think so.
auto newEnd = std::stable_partition(outHits.begin(), outHits.end(),
[requiredNumHits] (const ProcessedHit& ph) -> bool {
// should never really be greater.
return (ph.tqvec.size() >= requiredNumHits);
});
/*
bool didDrop = false;
for (auto it = newEnd; it != outHits.end(); ++it) {
std::cerr << "Dropped hit for txp " << it->tid << "\n";
didDrop = true;
}
if (didDrop) {
auto& eqClass = eqClasses[inHits[0].kinfo->eqId];
auto txpIt = eqClassLabels.begin() + eqClass.txpListStart;
auto txpListLen = eqClass.txpListLen;
auto txpEnd = txpIt + txpListLen;
std::cerr << "hits1: {";
while (txpIt != txpEnd) {
std::cerr << *txpIt << ", ";
++txpIt;
}
std::cerr << "}\n";
auto& eqClass2 = eqClasses[inHits[1].kinfo->eqId];
txpIt = eqClassLabels.begin() + eqClass2.txpListStart;
txpListLen = eqClass2.txpListLen;
txpEnd = txpIt + txpListLen;
std::cerr << "hits2: {";
while (txpIt != txpEnd) {
std::cerr << *txpIt << ", ";
++txpIt;
}
std::cerr << "}\n";
}
*/
// return only the valid hits
outHits.resize(std::distance(outHits.begin(), newEnd));
return outHits;
}
template <typename RapMapIndexT>
std::vector<ProcessedSAHit> intersectSAHits2(
std::vector<SAIntervalHit<typename RapMapIndexT::IndexType>>& inHits,
RapMapIndexT& rmi
) {
using OffsetT = typename RapMapIndexT::IndexType;
// Each inHit is a SAIntervalHit structure that contains
// an SA interval with all hits for a particuar query location
// on the read.
//
// We want to find the transcripts that appear in *every*
// interavl. Further, for each transcript, we want to
// know the positions within this txp.
// Check this --- we should never call this function
// with less than 2 hits.
SAProcessedHitVec outHits;
if (inHits.size() < 2) {
std::cerr << "intersectHitsSA() called with < 2 k-mer "
" hits; this shouldn't happen\n";
return outHits.hits;
}
auto& SA = rmi.SA;
auto& txpStarts = rmi.txpOffsets;
auto& txpIDs = rmi.positionIDs;
// Start with the smallest interval
// i.e. interval with the fewest hits.
SAIntervalHit<OffsetT>* minHit = &inHits[0];
for (auto& h : inHits) {
if (h.span() < minHit->span()) {
minHit = &h;
}
}
auto& outStructs = outHits.hits;
auto& outTxps = outHits.txps;
outStructs.reserve(minHit->span());
outTxps.reserve(minHit->span());
std::map<int, uint32_t> posMap;
// =========
//{ // Add the info from minHit to outHits
for (int i = minHit->begin; i < minHit->end; ++i) {
auto globalPos = SA[i];
auto tid = txpIDs[globalPos];
auto txpPos = globalPos - txpStarts[tid];
auto posIt = posMap.find(tid);
if (posIt == posMap.end()) {
posMap[tid] = outStructs.size();
outStructs.emplace_back(tid, txpPos, minHit->queryPos, minHit->queryRC);
} else {
outStructs[posIt->second].tqvec.emplace_back(txpPos, minHit->queryPos, minHit->queryRC);
}
}
std::sort(outStructs.begin(), outStructs.end(),
[] (const ProcessedSAHit& a, const ProcessedSAHit& b) -> bool {
return a.tid < b.tid;
});
for (auto it = outStructs.begin(); it != outStructs.end(); ++it) {
outTxps.emplace_back(it->tid);
}
// Sentinel value for search
outTxps.emplace_back(std::numeric_limits<uint32_t>::max());
/*
fbs::eytzinger_array_bfp<uint32_t, uint32_t, true> searchArray(
txpIndices.begin(), txpIndices.size()
);
*/
//}
// =========
// Now intersect everything in inHits (apart from minHits)
// to get the final set of mapping info.
for (auto& h : inHits) {
if (&h != minHit) { // don't intersect minHit with itself
intersectSAIntervalWithOutput2(h, rmi, outHits);
}
}
size_t requiredNumHits = inHits.size();
// Mark as active any transcripts with the required number of hits.
for (auto it = outStructs.begin(); it != outStructs.end(); ++it) {
if (it->tqvec.size() >= requiredNumHits) {
it->active = true;
}
}
return outStructs;
}
template <typename RapMapIndexT>
SAHitMap intersectSAHits(
std::vector<SAIntervalHit<typename RapMapIndexT::IndexType>>& inHits,
RapMapIndexT& rmi,
bool strictFilter
) {
using OffsetT = typename RapMapIndexT::IndexType;
// Each inHit is a SAIntervalHit structure that contains
// an SA interval with all hits for a particuar query location
// on the read.
//
// We want to find the transcripts that appear in *every*
// interavl. Further, for each transcript, we want to
// know the positions within this txp.
// Check this --- we should never call this function
// with less than 2 hits.
SAHitMap outHits;
if (inHits.size() < 2) {
std::cerr << "intersectHitsSA() called with < 2 hits "
" hits; this shouldn't happen\n";
return outHits;
}
auto& SA = rmi.SA;
auto& txpStarts = rmi.txpOffsets;
//auto& txpIDs = rmi.positionIDs;
auto& rankDict = rmi.rankDict;
// Start with the smallest interval
// i.e. interval with the fewest hits.
SAIntervalHit<OffsetT>* minHit = &inHits[0];
for (auto& h : inHits) {
if (h.span() < minHit->span()) {
minHit = &h;
}
}
//outHits.reserve(minHit->span());
// =========
{ // Add the info from minHit to outHits
for (OffsetT i = minHit->begin; i < minHit->end; ++i) {
auto globalPos = SA[i];
//auto tid = txpIDs[globalPos];
auto tid = rmi.transcriptAtPosition(globalPos);
auto txpPos = globalPos - txpStarts[tid];
outHits[tid].tqvec.emplace_back(txpPos, minHit->queryPos, minHit->queryRC);
}
}
// =========
// Now intersect everything in inHits (apart from minHits)
// to get the final set of mapping info.
size_t intervalCounter{2};
for (auto& h : inHits) {
if (&h != minHit) { // don't intersect minHit with itself
intersectSAIntervalWithOutput(h, rmi, intervalCounter, outHits);
++intervalCounter;
}
}
size_t requiredNumHits = inHits.size();
// Mark as active any transcripts with the required number of hits.
for (auto it = outHits.begin(); it != outHits.end(); ++it) {
bool enoughHits = (it->second.numActive >= requiredNumHits);
it->second.active = (strictFilter) ?
(enoughHits and it->second.checkConsistent(requiredNumHits)) :
(enoughHits);
}
return outHits;
}
/**
* Need to explicitly instantiate the versions we use
*/
using SAIndex32BitDense = RapMapSAIndex<int32_t,google::dense_hash_map<uint64_t, rapmap::utils::SAInterval<int32_t>,
rapmap::utils::KmerKeyHasher>>;
using SAIndex64BitDense = RapMapSAIndex<int64_t,google::dense_hash_map<uint64_t, rapmap::utils::SAInterval<int64_t>,
rapmap::utils::KmerKeyHasher>>;
using SAIndex32BitPerfect = RapMapSAIndex<int32_t, BooMap<uint64_t, rapmap::utils::SAInterval<int32_t>>>;
using SAIndex64BitPerfect = RapMapSAIndex<int64_t, BooMap<uint64_t, rapmap::utils::SAInterval<int64_t>>>;
template
void intersectSAIntervalWithOutput<SAIndex32BitDense>(SAIntervalHit<int32_t>& h,
SAIndex32BitDense& rmi,
uint32_t intervalCounter,
SAHitMap& outHits);
template
void intersectSAIntervalWithOutput<SAIndex64BitDense>(SAIntervalHit<int64_t>& h,
SAIndex64BitDense& rmi,
uint32_t intervalCounter,
SAHitMap& outHits);
template
SAHitMap intersectSAHits<SAIndex32BitDense>(std::vector<SAIntervalHit<int32_t>>& inHits,
SAIndex32BitDense& rmi, bool strictFilter);
template
SAHitMap intersectSAHits<SAIndex64BitDense>(std::vector<SAIntervalHit<int64_t>>& inHits,
SAIndex64BitDense& rmi, bool strictFilter);
template
void intersectSAIntervalWithOutput<SAIndex32BitPerfect>(SAIntervalHit<int32_t>& h,
SAIndex32BitPerfect& rmi,
uint32_t intervalCounter,
SAHitMap& outHits);
template
void intersectSAIntervalWithOutput<SAIndex64BitPerfect>(SAIntervalHit<int64_t>& h,
SAIndex64BitPerfect& rmi,
uint32_t intervalCounter,
SAHitMap& outHits);
template
SAHitMap intersectSAHits<SAIndex32BitPerfect>(std::vector<SAIntervalHit<int32_t>>& inHits,
SAIndex32BitPerfect& rmi, bool strictFilter);
template
SAHitMap intersectSAHits<SAIndex64BitPerfect>(std::vector<SAIntervalHit<int64_t>>& inHits,
SAIndex64BitPerfect& rmi, bool strictFilter);
}
}
|