File: RapMapUtils.hpp

package info (click to toggle)
salmon 0.7.2%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 4,352 kB
  • ctags: 5,243
  • sloc: cpp: 42,341; ansic: 6,252; python: 228; makefile: 207; sh: 190
file content (828 lines) | stat: -rw-r--r-- 31,320 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#ifndef __RAP_MAP_UTILS_HPP__
#define __RAP_MAP_UTILS_HPP__

#include <atomic>
#include <cmath>
#include <memory>
#include "xxhash.h"
#include <cereal/archives/binary.hpp>
#include "jellyfish/mer_dna.hpp"
#include "spdlog/spdlog.h"
#include "spdlog/fmt/ostr.h"
#include "spdlog/fmt/fmt.h"
#include "PairSequenceParser.hpp"

#ifdef RAPMAP_SALMON_SUPPORT
#include "LibraryFormat.hpp"
#endif

#ifdef __GNUC__
#define LIKELY(x) __builtin_expect((x),1)
#define UNLIKELY(x) __builtin_expect((x),0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif

// Must be forward-declared
template <typename IndexT>
class PairAlignmentFormatter;
template <typename IndexT>
class SingleAlignmentFormatter;

// Forward-declare because the C++ compiler is dumb
class RapMapIndex;

namespace rapmap {
    namespace utils {

    using my_mer = jellyfish::mer_dna_ns::mer_base_static<uint64_t, 1>;

    constexpr uint32_t newTxpSetMask = 0x80000000;
    constexpr uint32_t rcSetMask = 0x40000000;

    // Positions are stored in a packed format, where the highest
    // 2-bits encode if this position refers to a new transcript
    // and whether or not the k-mer from the hash matches this txp
    // in the forward or RC direction.
    void decodePosition(uint32_t p, uint32_t& pout, bool& newTxp, bool& isRC);

    template <typename IndexT>
        void writeSAMHeader(IndexT& rmi, std::shared_ptr<spdlog::logger> out) {
            fmt::MemoryWriter hd;
	    hd.write("@HD\tVN:1.0\tSO:unknown\n");

            auto& txpNames = rmi.txpNames;
            auto& txpLens = rmi.txpLens;

            auto numRef = txpNames.size();
            for (size_t i = 0; i < numRef; ++i) {
                hd.write("@SQ\tSN:{}\tLN:{:d}\n", txpNames[i], txpLens[i]);
            }
            // Eventually output a @PG line
            hd.write("@PG\tID:rapmap\tPN:rapmap\tVN:0.3.1\n");
            std::string headerStr(hd.str());
            // Don't include the last '\n', since the logger will do it for us.
            headerStr.pop_back();
            out->info(headerStr);
        }

    template <typename IndexT>
        void writeSAMHeader(IndexT& rmi, std::ostream& outStream) {
            fmt::MemoryWriter hd;
	    hd.write("@HD\tVN:1.0\tSO:unknown\n");

            auto& txpNames = rmi.txpNames;
            auto& txpLens = rmi.txpLens;

            auto numRef = txpNames.size();
            for (size_t i = 0; i < numRef; ++i) {
                hd.write("@SQ\tSN:{}\tLN:{:d}\n", txpNames[i], txpLens[i]);
            }
            // Eventually output a @PG line
            hd.write("@PG\tID:rapmap\tPN:rapmap\tVN:0.3.1\n");
            outStream << hd.str();
        }

    // from http://stackoverflow.com/questions/9435385/split-a-string-using-c11
    std::vector<std::string> tokenize(const std::string &s, char delim);

    // from https://github.com/cppformat/cppformat/issues/105
    class FixedBuffer : public fmt::Buffer<char> {
        public:
            FixedBuffer(char *array, std::size_t size)
                : fmt::Buffer<char>(array, size) {}

        protected:
            void grow(std::size_t size) {
                throw std::runtime_error("buffer overflow");
            }
    };

    class FixedWriter : public fmt::Writer {
        private:
            FixedBuffer buffer_;
        public:
            FixedWriter(char *array, std::size_t size)
                : fmt::Writer(buffer_), buffer_(array, size) {}
    };

    /**
     * Stores both the key (k-mer)
     * and the interval to which it corresponds.
     * This is useful if the hash itself doesn't validate
     * the key (e.g. a minimum perfect hash).
     **/
    template <typename IndexT>
    struct SAIntervalWithKey {
        uint64_t kmer;
      //  SAInterval<IndexT> second;
        IndexT begin;
        IndexT end;
        template <typename Archive>
            void load(Archive& ar) { ar(kmer, begin, end); }

        template <typename Archive>
            void save(Archive& ar) const { ar(kmer, begin, end); }
    };

    template <typename IndexT>
    struct SAInterval {
      /*
        SAInterval(IndexT beginIn, IndexT endIn) : begin(beginIn), end(endIn) {}
	SAInterval(std::initializer_list<IndexT> il) {
	  auto it = il.begin();
	  begin = *(it);
	  ++it;
	  end = *(il.begin());
	}
	*/

        IndexT begin;
        IndexT end;
        template <typename Archive>
            void load(Archive& ar) { ar(begin, end); }

        template <typename Archive>
            void save(Archive& ar) const { ar(begin, end); }
    };


    struct HitCounters {
        std::atomic<uint64_t> peHits{0};
        std::atomic<uint64_t> seHits{0};
        std::atomic<uint64_t> trueHits{0};
        std::atomic<uint64_t> totHits{0};
        std::atomic<uint64_t> numReads{0};
        std::atomic<uint64_t> tooManyHits{0};
        std::atomic<uint64_t> lastPrint{0};
    };

    class JFMerKeyHasher{
        public:
            size_t operator()(const my_mer& m) const {
                auto k = rapmap::utils::my_mer::k();
                auto v = m.get_bits(0, 2*k);
                return XXH64(static_cast<void*>(&v), 8, 0);
            }
    };

    class KmerKeyHasher {
        public:
            size_t operator()(const uint64_t& m) const {
                //auto k = rapmap::utils::my_mer::k();
                //auto v = m.get_bits(0, 2*k);
                auto v = m;
                return XXH64(static_cast<void*>(&v), 8, 0);
            }
    };

    struct KmerInterval {
        uint64_t offset;
        uint32_t length;

        template <typename Archive>
            void save(Archive& arch) const {
                arch(offset, length);
            }

        template <typename Archive>
            void load(Archive& arch) {
                arch(offset, length);
            }
    };

    struct KmerInfo {
        KmerInfo () : eqId(0), offset(0), count(0) {}


        KmerInfo(uint32_t eqIdIn, uint32_t offsetIn, uint32_t countIn) :
            eqId(eqIdIn), offset(offsetIn), count(countIn) {}

        template <typename Archive>
        void load(Archive& ar) {
            ar(eqId, offset, count);
        }

        template <typename Archive>
        void save(Archive& ar) const {
            ar(eqId, offset, count);
        }
        uint32_t eqId = 0;
        uint32_t offset = 0;
        uint32_t count = 0;
    };


    template <class T>
    inline void hashCombine(std::size_t& seed, const T& v)
    {
            std::hash<T> hasher;
            seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
    }

    constexpr uint32_t uint32Invalid = std::numeric_limits<uint32_t>::max();
    using PositionList = std::vector<uint32_t>;
    using KmerInfoList = std::vector<KmerInfo>;

    enum class MateStatus : uint8_t {
        SINGLE_END = 0,
        PAIRED_END_LEFT = 1,
        PAIRED_END_RIGHT = 2,
        PAIRED_END_PAIRED = 3 };

    // Wraps the standard iterator of the Position list to provide
    // some convenient functionality.  In the future, maybe this
    // should be a proper iterator adaptor.
    struct PositionListHelper{
        using PLIt = PositionList::iterator;

        PositionListHelper(PLIt itIn, PLIt endIn) :
            it_(itIn), end_(endIn) {}
        // The underlying iterator shouldn't be advanced further
        inline bool done() { return it_ == end_; }

        // The actual postion on the transcript
        int32_t pos() const { return static_cast<int32_t>((*it_) & 0x3FFFFFFF); }

        // True if the position encoded was on the reverse complement strand
        // of the reference transcript, false otherwise.
        bool isRC() const { return (*it_) & 0x40000000; }

        // True if we hit the position list for a new transcript, false otherwise
        bool isNewTxp() const { return (*it_) & 0x80000000; }

        void advanceToNextTranscript() {
            if (it_ < end_) {
                do {
                    ++it_;
                } while (!isNewTxp() and it_ != end_);

            }
        }

        PLIt it_; // The underlying iterator
        PLIt end_; // The end of the container
    };


    struct QuasiAlignment {
  	QuasiAlignment() :
		tid(std::numeric_limits<uint32_t>::max()),
		pos(std::numeric_limits<int32_t>::max()),
		fwd(true),
		readLen(std::numeric_limits<uint32_t>::max()),
		fragLen(std::numeric_limits<uint32_t>::max()),
		isPaired(false)
#ifdef RAPMAP_SALMON_SUPPORT
        ,format(LibraryFormat::formatFromID(0))
#endif // RAPMAP_SALMON_SUPPORT
        {}

        QuasiAlignment(uint32_t tidIn, int32_t posIn,
                bool fwdIn, uint32_t readLenIn,
                uint32_t fragLenIn = 0,
                bool isPairedIn = false) :
            tid(tidIn), pos(posIn), fwd(fwdIn),
            readLen(readLenIn), fragLen(fragLenIn),
            isPaired(isPairedIn)
#ifdef RAPMAP_SALMON_SUPPORT
        ,format(LibraryFormat::formatFromID(0))
#endif // RAPMAP_SALMON_SUPPORT
        {}
        QuasiAlignment(QuasiAlignment&& other) = default;
        QuasiAlignment& operator=(QuasiAlignment&) = default;
        QuasiAlignment& operator=(QuasiAlignment&& o) = default;
        QuasiAlignment(const QuasiAlignment& o) = default;
        QuasiAlignment(QuasiAlignment& o) = default;

        // Some convenience functions to allow salmon interop
#ifdef RAPMAP_SALMON_SUPPORT
        inline uint32_t transcriptID() const { return tid; }
        inline double score() { return 1.0; }
        inline uint32_t fragLength() const { return fragLen; }

        inline uint32_t fragLengthPedantic(uint32_t txpLen) const {
            if (mateStatus != rapmap::utils::MateStatus::PAIRED_END_PAIRED
                or fwd == mateIsFwd) {
                return 0;
            }
            int32_t p1 = fwd ? pos : matePos;
            p1 = (p1 < 0) ? 0 : p1;
            p1 = (p1 > txpLen) ? txpLen : p1;
            int32_t p2 = fwd ? matePos + mateLen : pos + readLen;
            p2 = (p2 < 0) ? 0 : p2;
            p2 = (p2 > txpLen) ? txpLen : p2;

            return (p1 > p2) ? p1 - p2 : p2 - p1;
        }

        inline int32_t hitPos() { return std::min(pos, matePos); }
        double logProb{HUGE_VAL};
        double logBias{HUGE_VAL};
        inline LibraryFormat libFormat() { return format; }
        LibraryFormat format;
#endif // RAPMAP_SALMON_SUPPORT

        // Only 1 since the mate must have the same tid
        // we won't call *chimeric* alignments here.
        uint32_t tid;
        // Left-most position of the hit
        int32_t pos;
        // left-most position of the mate
        int32_t matePos;
        // Is the read from the forward strand
        bool fwd;
        // Is the mate from the forward strand
        bool mateIsFwd;
        // The fragment length (template length)
        // This is 0 for single-end or orphaned reads.
        uint32_t fragLen;
        // The read's length
        uint32_t readLen;
        // The mate's length
        uint32_t mateLen;
        // Is this a paired *alignment* or not
        bool isPaired;
        MateStatus mateStatus;
    };

    struct HitInfo {
        HitInfo(KmerInfoList::iterator kit, uint32_t merIDIn,
                int32_t queryPosIn, bool queryRCIn) :
                kinfo(kit), merID(merIDIn), queryPos(queryPosIn),
                queryRC(queryRCIn) {}

        KmerInfoList::iterator kinfo;
        uint32_t merID;
        int32_t queryPos;
        bool queryRC;
    };

    template <typename OffsetT>
    struct SAIntervalHit {
        SAIntervalHit(OffsetT beginIn, OffsetT endIn, uint32_t lenIn, uint32_t queryPosIn, bool queryRCIn) :
            begin(beginIn), end(endIn), len(lenIn), queryPos(queryPosIn), queryRC(queryRCIn) {}

	      OffsetT span() { return end - begin; }
        OffsetT begin, end;
        uint32_t len, queryPos;
        bool queryRC;
    };

    struct SATxpQueryPos {
	SATxpQueryPos(uint32_t posIn, uint32_t qposIn, bool queryRCIn, bool activeIn = false) :
		pos(posIn), queryPos(qposIn), queryRC(queryRCIn), active(activeIn) {}
	uint32_t pos, queryPos;
	bool queryRC, active;
    };

    struct ProcessedSAHit {
	    ProcessedSAHit() : tid(std::numeric_limits<uint32_t>::max()), active(false), numActive(1) {}

	    ProcessedSAHit(uint32_t txpIDIn, uint32_t txpPosIn, uint32_t queryPosIn, bool queryRCIn) :
		    tid(txpIDIn), active(false), numActive(1)
	    {
		tqvec.emplace_back(txpPosIn, queryPosIn, queryRCIn);
	    }

        /**
         * This enforces a more stringent consistency check on
         * the hits for this transcript.  The hits must be co-linear
         * with respect to the query and target.
         *
         * input: numToCheck --- the number of hits to check in sorted order
         *                       hits after the last of these need not be consistent.
         * return: numToCheck if the first numToCheck hits are consistent;
         *         -1 otherwise
         **/
        int32_t checkConsistent(int32_t numToCheck) {
            auto numHits = tqvec.size();

            // special case for only 1 or two hits (common)
            if (numHits == 1) {
                return numToCheck;
            } else if (numHits == 2) {
                auto& h1 = (tqvec[0].queryPos < tqvec[1].queryPos) ? tqvec[0] : tqvec[1];
                auto& h2 = (tqvec[0].queryPos < tqvec[1].queryPos) ? tqvec[1] : tqvec[2];
                return (h2.pos > h1.pos) ? (numToCheck) : -1;
            } else {
                // first, sort by query position
                std::sort(tqvec.begin(), tqvec.end(),
                          [](const SATxpQueryPos& q1, const SATxpQueryPos& q2) -> bool {
                              return q1.queryPos < q2.queryPos;
                          });

                int32_t lastRefPos{std::numeric_limits<int32_t>::min()};
                for (size_t i = 0; i < numToCheck; ++i) {
                    int32_t refPos = static_cast<int32_t>(tqvec[i].pos);
                    if (refPos > lastRefPos) {
                        lastRefPos = refPos;
                    } else {
                        return i;
                    }
                }
                return numToCheck;
            }
        }

	    uint32_t tid;
	    std::vector<SATxpQueryPos> tqvec;
        bool active;
	    uint32_t numActive;
    };

    struct SAHitInfo {
	    SAHitInfo(uint32_t txpIDIn, uint32_t txpPosIn, uint32_t queryPosIn, bool queryRCIn) :
		    tid(txpIDIn), pos(txpPosIn), queryPos(queryPosIn), queryRC(queryRCIn) {}
	    uint32_t tid;
	    uint32_t pos;
	    uint32_t queryPos;
	    bool queryRC;
    };

    struct TxpQueryPos {
        TxpQueryPos(PositionListHelper& ph, int32_t queryPosIn, bool queryRCIn) :
                txpPosInfo(ph), queryPos(queryPosIn), queryRC(queryRCIn) {}
        // Iterator for the beginning of the position list
        // of a given k-mer into a given transcript.
        PositionListHelper txpPosInfo;
        // The position of the k-mer on the query.
        int32_t queryPos;
        bool queryRC;
    };

    struct ProcessedHit {
        ProcessedHit() : tid(std::numeric_limits<uint32_t>::max()) {}
        ProcessedHit(uint32_t tidIn,
                     PositionListHelper ph, int32_t queryPos, bool queryRC) :
                     tid(tidIn) {
                         tqvec.emplace_back(ph, queryPos, queryRC);
                     }


        uint32_t tid; // transcript id
        // A vector of iterators into the position list
        // for the k-mers hitting this transcript
        std::vector<TxpQueryPos> tqvec;
    };


    struct EqClass {
        EqClass() :
            txpListStart(uint32Invalid), txpListLen(uint32Invalid) {}
        EqClass(uint32_t txpListStartIn, uint32_t txpListLenIn) :
            txpListStart(txpListStartIn), txpListLen(txpListLenIn) {}

        template <typename Archive>
        void load (Archive& ar) {
            ar(txpListStart, txpListLen);
        }

        template <typename Archive>
        void save (Archive& ar) const {
            ar(txpListStart, txpListLen);
        }

        uint32_t txpListStart;
        uint32_t txpListLen;
    };

    inline void printMateStatus(rapmap::utils::MateStatus ms) {
        switch(ms) {
            case rapmap::utils::MateStatus::SINGLE_END:
                std::cerr << "SINGLE END";
                break;
            case rapmap::utils::MateStatus::PAIRED_END_LEFT:
                std::cerr << "PAIRED END (LEFT)";
                break;
            case rapmap::utils::MateStatus::PAIRED_END_RIGHT:
                std::cerr << "PAIRED END (RIGHT)";
                break;
            case rapmap::utils::MateStatus::PAIRED_END_PAIRED:
                std::cerr << "PAIRED END (PAIRED)";
                break;
        }
    }


    // Declarations for functions dealing with SAM formatting and output
    //
    inline void adjustOverhang(int32_t& pos, uint32_t readLen,
		    uint32_t txpLen, FixedWriter& cigarStr) {
	    cigarStr.clear();
	    if (pos + readLen < 0) {
            cigarStr.write("{}S", readLen);
            pos = 0;
        } else if (pos < 0) {
		    int32_t matchLen = readLen + pos;
            int32_t clipLen = readLen - matchLen;
		    cigarStr.write("{}S{}M", clipLen, matchLen);
		    // Now adjust the mapping position
		    pos = 0;
	    } else if (pos > txpLen) {
            cigarStr.write("{}S", readLen);
        } else if (pos + readLen > txpLen) {
		    int32_t matchLen = txpLen - pos;
		    int32_t clipLen = readLen - matchLen;
		    cigarStr.write("{}M{}S", matchLen, clipLen);
	    } else {
		    cigarStr.write("{}M", readLen);
	    }
    }

    inline void adjustOverhang(QuasiAlignment& qa, uint32_t txpLen,
		    FixedWriter& cigarStr1, FixedWriter& cigarStr2) {
	    if (qa.isPaired) { // both mapped
		    adjustOverhang(qa.pos, qa.readLen, txpLen, cigarStr1);
		    adjustOverhang(qa.matePos, qa.mateLen, txpLen, cigarStr2);
	    } else if (qa.mateStatus == MateStatus::PAIRED_END_LEFT ) {
		    // left read mapped
		    adjustOverhang(qa.pos, qa.readLen, txpLen, cigarStr1);
		    // right read un-mapped will just be read length * S
		    cigarStr2.clear();
		    cigarStr2.write("{}S", qa.mateLen);
	    } else if (qa.mateStatus == MateStatus::PAIRED_END_RIGHT) {
		    // right read mapped
		    adjustOverhang(qa.pos, qa.readLen, txpLen, cigarStr2);
		    // left read un-mapped will just be read length * S
		    cigarStr1.clear();
		    cigarStr1.write("{}S", qa.readLen);
	    }
    }



        // get the sam flags for the quasialignment qaln.
        // peinput is true if the read is paired in *sequencing*; false otherwise
        // the sam flags for mate 1 are written into flags1 and for mate2 into flags2
        inline void getSamFlags(const QuasiAlignment& qaln,
                uint16_t& flags) {
            constexpr uint16_t pairedInSeq = 0x1;
            constexpr uint16_t mappedInProperPair = 0x2;
            constexpr uint16_t unmapped = 0x4;
            constexpr uint16_t mateUnmapped = 0x8;
            constexpr uint16_t isRC = 0x10;
            constexpr uint16_t mateIsRC = 0x20;
            constexpr uint16_t isRead1 = 0x40;
            constexpr uint16_t isRead2 = 0x80;
            constexpr uint16_t isSecondaryAlignment = 0x100;
            constexpr uint16_t failedQC = 0x200;
            constexpr uint16_t isPCRDup = 0x400;
            constexpr uint16_t supplementaryAln = 0x800;

            flags = 0;
            // Not paired in sequencing
            // flags1 = (peInput) ? pairedInSeq : 0;
            // flags |= properlyAligned;
            // we don't output unmapped yet
            // flags |= unmapped
            // flags |= mateUnmapped
            flags |= (qaln.fwd) ? 0 : isRC;
            // Mate flag meaningless
            // flags1 |= (qaln.mateIsFwd) ? 0 : mateIsRC;
            // flags |= isRead1;
            //flags2 |= isRead2;
        }

        // get the sam flags for the quasialignment qaln.
        // peinput is true if the read is paired in *sequencing*; false otherwise
        // the sam flags for mate 1 are written into flags1 and for mate2 into flags2
        inline void getSamFlags(const QuasiAlignment& qaln,
                bool peInput,
                uint16_t& flags1,
                uint16_t& flags2) {
            constexpr uint16_t pairedInSeq = 0x1;
            constexpr uint16_t properlyAligned = 0x2;
            constexpr uint16_t unmapped = 0x4;
            constexpr uint16_t mateUnmapped = 0x8;
            constexpr uint16_t isRC = 0x10;
            constexpr uint16_t mateIsRC = 0x20;
            constexpr uint16_t isRead1 = 0x40;
            constexpr uint16_t isRead2 = 0x80;
            constexpr uint16_t isSecondaryAlignment = 0x100;
            constexpr uint16_t failedQC = 0x200;
            constexpr uint16_t isPCRDup = 0x400;
            constexpr uint16_t supplementaryAln = 0x800;

            flags1 = flags2 = 0;
            flags1 = (peInput) ? pairedInSeq : 0;
            flags1 |= (qaln.isPaired) ? properlyAligned : 0;
            flags2 = flags1;
            // we don't output unmapped yet
            bool read1Unaligned = qaln.mateStatus == MateStatus::PAIRED_END_RIGHT;
            bool read2Unaligned = qaln.mateStatus == MateStatus::PAIRED_END_LEFT;
            // If read 1 is unaligned, flags1 gets "unmapped" and flags2 gets "mate unmapped"
            flags1 |= (read1Unaligned) ? unmapped : 0;
            flags2 |= (read1Unaligned) ? mateUnmapped : 0;
            // If read 2 is unaligned, flags2 gets "unmapped" and flags1 gets "mate unmapped"
            flags2 |= (read2Unaligned) ? unmapped : 0;
            flags1 |= (read2Unaligned) ? mateUnmapped : 0;

            flags1 |= (qaln.fwd) ? 0 : isRC;
            flags1 |= (qaln.mateIsFwd) ? 0 : mateIsRC;
            flags2 |= (qaln.mateIsFwd) ? 0 : isRC;
            flags2 |= (qaln.fwd) ? 0 : mateIsRC;
            flags1 |= isRead1;
            flags2 |= isRead2;
        }

	// Adapted from
        // https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library/blob/8c9933a1685e0ab50c7d8b7926c9068bc0c9d7d2/src/main.c#L36
        void reverseRead(std::string& seq,
                std::string& qual,
                std::string& readWork,
                std::string& qualWork);

        template <typename ReadPairT, typename IndexT>
        uint32_t writeAlignmentsToStream(
                ReadPairT& r,
                PairAlignmentFormatter<IndexT>& formatter,
                HitCounters& hctr,
                std::vector<QuasiAlignment>& jointHits,
                fmt::MemoryWriter& sstream);

        template <typename ReadT, typename IndexT>
        uint32_t writeAlignmentsToStream(
                ReadT& r,
                SingleAlignmentFormatter<IndexT>& formatter,
                HitCounters& hctr,
                std::vector<QuasiAlignment>& jointHits,
                fmt::MemoryWriter& sstream);

        inline void mergeLeftRightHitsFuzzy(
                bool leftMatches,
                bool rightMatches,
                std::vector<QuasiAlignment>& leftHits,
                std::vector<QuasiAlignment>& rightHits,
                std::vector<QuasiAlignment>& jointHits,
                uint32_t readLen,
                uint32_t maxNumHits,
                bool& tooManyHits,
                HitCounters& hctr) {

            if (leftHits.empty()) {
                if (!leftMatches) {
                    if (!rightHits.empty()) {
                        jointHits.insert(jointHits.end(),
                                std::make_move_iterator(rightHits.begin()),
                                std::make_move_iterator(rightHits.end()));
                        hctr.seHits += rightHits.size();
                    }
                }
            } else if (rightHits.empty()) {
                if (!rightMatches) {
                    if (!leftHits.empty()) {
                        jointHits.insert(jointHits.end(),
                                std::make_move_iterator(leftHits.begin()),
                                std::make_move_iterator(leftHits.end()));
                        hctr.seHits += leftHits.size();
                    }
                }
            } else {
                constexpr const int32_t signedZero{0};
                auto leftIt = leftHits.begin();
                auto leftEnd = leftHits.end();
                auto leftLen = std::distance(leftIt, leftEnd);
                if (rightHits.size() > 0) {
                    auto rightIt = rightHits.begin();
                    auto rightEnd = rightHits.end();
                    auto rightLen = std::distance(rightIt, rightEnd);
                    size_t numHits{0};
                    jointHits.reserve(std::min(leftLen, rightLen));
                    uint32_t leftTxp, rightTxp;
                    while (leftIt != leftEnd && rightIt != rightEnd) {
                        leftTxp = leftIt->tid;
                        rightTxp = rightIt->tid;
                        if (leftTxp < rightTxp) {
                            ++leftIt;
                        } else {
                            if (!(rightTxp < leftTxp)) {
                                int32_t startRead1 = std::max(leftIt->pos, signedZero);
                                int32_t startRead2 = std::max(rightIt->pos, signedZero);
                                bool read1First{(startRead1 < startRead2)};
                                int32_t fragStartPos = read1First ? startRead1 : startRead2;
                                int32_t fragEndPos = read1First ?
                                    (startRead2 + rightIt->readLen) : (startRead1 + leftIt->readLen);
                                uint32_t fragLen = fragEndPos - fragStartPos;
                                jointHits.emplace_back(leftTxp,
                                        leftIt->pos,
                                        leftIt->fwd,
                                        leftIt->readLen,
                                        fragLen, true);
                                // Fill in the mate info
                                auto& qaln = jointHits.back();
                                qaln.mateLen = rightIt->readLen;
                                qaln.matePos = rightIt->pos;
                                qaln.mateIsFwd = rightIt->fwd;
                                jointHits.back().mateStatus = MateStatus::PAIRED_END_PAIRED;

                                ++numHits;
                                if (numHits > maxNumHits) { tooManyHits = true; break; }
                                ++leftIt;
                            }
                            ++rightIt;
                        }
                    }
                }
                if (tooManyHits) { jointHits.clear(); ++hctr.tooManyHits; }
            }

            // If we had proper paired hits
            if (jointHits.size() > 0) {
                hctr.peHits += jointHits.size();
                //orphanStatus = 0;
            }
        }

        inline void mergeLeftRightHits(
                std::vector<QuasiAlignment>& leftHits,
                std::vector<QuasiAlignment>& rightHits,
                std::vector<QuasiAlignment>& jointHits,
                uint32_t readLen,
                uint32_t maxNumHits,
                bool& tooManyHits,
                HitCounters& hctr) {
            if (leftHits.size() > 0) {
                constexpr const int32_t signedZero{0};
                auto leftIt = leftHits.begin();
                auto leftEnd = leftHits.end();
                auto leftLen = std::distance(leftIt, leftEnd);
                if (rightHits.size() > 0) {
                    auto rightIt = rightHits.begin();
                    auto rightEnd = rightHits.end();
                    auto rightLen = std::distance(rightIt, rightEnd);
                    size_t numHits{0};
                    jointHits.reserve(std::min(leftLen, rightLen));
                    uint32_t leftTxp, rightTxp;
                    while (leftIt != leftEnd && rightIt != rightEnd) {
                        leftTxp = leftIt->tid;
                        rightTxp = rightIt->tid;
                        if (leftTxp < rightTxp) {
                            ++leftIt;
                        } else {
                            if (!(rightTxp < leftTxp)) {
                                int32_t startRead1 = std::max(leftIt->pos, signedZero);
                                int32_t startRead2 = std::max(rightIt->pos, signedZero);
                                bool read1First{(startRead1 < startRead2)};
                                int32_t fragStartPos = read1First ? startRead1 : startRead2;
                                int32_t fragEndPos = read1First ?
                                    (startRead2 + rightIt->readLen) : (startRead1 + leftIt->readLen);
                                uint32_t fragLen = fragEndPos - fragStartPos;
                                jointHits.emplace_back(leftTxp,
                                        startRead1,
                                        leftIt->fwd,
                                        leftIt->readLen,
                                        fragLen, true);
                                // Fill in the mate info
                                auto& qaln = jointHits.back();
                                qaln.mateLen = rightIt->readLen;
                                qaln.matePos = startRead2;
                                qaln.mateIsFwd = rightIt->fwd;
                                jointHits.back().mateStatus = MateStatus::PAIRED_END_PAIRED;

                                ++numHits;
                                if (numHits > maxNumHits) { tooManyHits = true; break; }
                                ++leftIt;
                            }
                            ++rightIt;
                        }
                    }
                }
                if (tooManyHits) { jointHits.clear(); ++hctr.tooManyHits; }
            }

            // If we had proper paired hits
            if (jointHits.size() > 0) {
                hctr.peHits += jointHits.size();
                //orphanStatus = 0;
            } else if (leftHits.size() + rightHits.size() > 0 and !tooManyHits) {
                // If there weren't proper paired hits, then either
                // there were too many hits, and we forcibly discarded the read
                // or we take the single end hits.
                auto numHits = leftHits.size() + rightHits.size();
                hctr.seHits += numHits;
                //orphanStatus = 0;
                //orphanStatus |= (leftHits.size() > 0) ? 0x1 : 0;
                //orphanStatus |= (rightHits.size() > 0) ? 0x2 : 0;
                jointHits.insert(jointHits.end(),
                        std::make_move_iterator(leftHits.begin()),
                        std::make_move_iterator(leftHits.end()));
                jointHits.insert(jointHits.end(),
                        std::make_move_iterator(rightHits.begin()),
                        std::make_move_iterator(rightHits.end()));
            }
        }

    /*
    template <typename Archive>
    void save(Archive& archive, const my_mer& mer);

    template <typename Archive>
    void load(Archive& archive, my_mer& mer);
    */
    }
}


#endif // __RAP_MAP_UTILS_HPP__