1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
"""
Randomized Lasso/Logistic: feature selection based on Lasso and
sparse Logistic Regression
"""
# Author: Gael Varoquaux, Alexandre Gramfort
#
# License: BSD Style.
import itertools
import numpy as np
from scipy.sparse import issparse
from scipy.interpolate import interp1d
from .base import center_data
from ..base import BaseEstimator, TransformerMixin
from ..utils import as_float_array, check_random_state, safe_asarray
from ..externals.joblib import Parallel, delayed
from .least_angle import lars_path, LassoLarsIC
from .logistic import LogisticRegression
from ..externals.joblib import Memory
###############################################################################
# Randomized linear model: feature selection
def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200,
n_jobs=1, verbose=False, pre_dispatch='3*n_jobs',
random_state=None, sample_fraction=.75, **params):
random_state = check_random_state(random_state)
# We are generating 1 - weights, and not weights
n_samples, n_features = X.shape
if not (0 < scaling < 1):
raise ValueError(
"'scaling' should be between 0 and 1. Got %r instead." % scaling)
scaling = 1. - scaling
scores_ = 0.0
for active_set in Parallel(n_jobs=n_jobs, verbose=verbose,
pre_dispatch=pre_dispatch)(
delayed(estimator_func)(X, y,
weights=scaling * random_state.random_integers(0,
1, size=(n_features,)),
mask=(random_state.rand(n_samples) < sample_fraction),
verbose=max(0, verbose - 1),
**params)
for _ in range(n_resampling)):
scores_ += active_set.astype(np.float)
scores_ /= n_resampling
return scores_
class BaseRandomizedLinearModel(BaseEstimator, TransformerMixin):
"""Base class to implement randomized linear models for feature selection
This implements the strategy by Meinshausen and Buhlman:
stability selection with randomized sampling, and random re-weighting of
the penalty.
"""
_center_data = staticmethod(center_data)
def fit(self, X, y):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
training data.
y : array-like, shape = [n_samples]
target values.
Returns
-------
self : object
returns an instance of self.
"""
X = np.atleast_2d(X)
n_samples, n_features = X.shape
y = np.atleast_1d(y)
X = as_float_array(X, copy=False)
X, y, X_mean, y_mean, X_std = self._center_data(X, y,
self.fit_intercept,
self.normalize)
estimator_func, params = self._make_estimator_and_params(X, y)
memory = self.memory
if isinstance(memory, basestring):
memory = Memory(cachedir=memory)
scores_ = memory.cache(_resample_model,
ignore=['verbose', 'n_jobs', 'pre_dispatch'])(
estimator_func, X, y,
scaling=self.scaling,
n_resampling=self.n_resampling,
n_jobs=self.n_jobs,
verbose=self.verbose,
pre_dispatch=self.pre_dispatch,
random_state=self.random_state,
sample_fraction=self.sample_fraction,
**params)
if scores_.ndim == 1:
scores_ = scores_[:, np.newaxis]
self.all_scores_ = scores_
self.scores_ = np.max(self.all_scores_, axis=1)
return self
def _make_estimator_and_params(self, X, y):
"""Return the parameters passed to the estimator"""
raise NotImplementedError
def get_support(self, indices=False):
"""Return a mask, or list, of the features/indices selected."""
mask = self.scores_ > self.selection_threshold
return mask if not indices else np.where(mask)[0]
# XXX: the two function below are copy/pasted from feature_selection,
# Should we add an intermediate base class?
def transform(self, X):
"""Transform a new matrix using the selected features"""
return safe_asarray(X)[:, self.get_support(indices=issparse(X))]
def inverse_transform(self, X):
"""Transform a new matrix using the selected features"""
support = self.get_support()
if X.ndim == 1:
X = X[None, :]
Xt = np.zeros((X.shape[0], support.size))
Xt[:, support] = X
return Xt
###############################################################################
# Randomized lasso: regression settings
def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False,
precompute=False, eps=np.finfo(np.float).eps,
max_iter=500):
X = X[mask]
y = y[mask]
# Center X and y to avoid fit the intercept
X -= X.mean(axis=0)
y -= y.mean()
alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float))
X = (1 - weights) * X
alphas_, _, coef_ = lars_path(X, y,
Gram=precompute, copy_X=False,
copy_Gram=False, alpha_min=np.min(alpha),
method='lasso', verbose=verbose,
max_iter=max_iter, eps=eps)
if len(alpha) > 1:
if len(alphas_) > 1: # np.min(alpha) < alpha_min
interpolator = interp1d(alphas_[::-1], coef_[:, ::-1],
bounds_error=False, fill_value=0.)
scores = (interpolator(alpha) != 0.0)
else:
scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool)
else:
scores = coef_[:, -1] != 0.0
return scores
class RandomizedLasso(BaseRandomizedLinearModel):
"""Randomized Lasso
Randomized Lasso works by resampling the train data and computing
a Lasso on each resampling. In short, the features selected more
often are good features. It is also known as stability selection.
Parameters
----------
alpha : float, 'aic', or 'bic'
The regularization parameter alpha parameter in the Lasso.
Warning: this is not the alpha parameter in the stability selection
article which is scaling.
scaling : float
The alpha parameter in the stability selection article used to
randomly scale the features. Should be between 0 and 1.
sample_fraction : float
The fraction of samples to be used in each randomized design.
Should be between 0 and 1. If 1, all samples are used.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
precompute : True | False | 'auto'
Whether to use a precomputed Gram matrix to speed up
calculations. If set to 'auto' let us decide. The Gram
matrix can also be passed as argument.
max_iter : integer, optional
Maximum number of iterations to perform in the Lars algorithm.
eps : float, optional
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Unlike the 'tol' parameter in some iterative
optimization-based algorithms, this parameter does not control
the tolerance of the optimization.
n_jobs : integer, optional
Number of CPUs to use during the resampling. If '-1', use
all the CPUs
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediatly
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
memory : Instance of joblib.Memory or string
Used for internal caching. By default, no caching is done.
If a string is given, it is thepath to the caching directory.
Attributes
----------
`scores_` : array, shape = [n_features]
Feature scores between 0 and 1.
`all_scores_` : array, shape = [n_features, n_reg_parameter]
Feature scores between 0 and 1 for all values of the regularization \
parameter. The reference article suggests ``scores_`` is the max of \
``all_scores_``.
Examples
--------
>>> from sklearn.linear_model import RandomizedLasso
>>> randomized_lasso = RandomizedLasso()
Notes
-----
See examples/linear_model/plot_sparse_recovery.py for an example.
References
----------
Stability selection
Nicolai Meinshausen, Peter Buhlmann
Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010
DOI: 10.1111/j.1467-9868.2010.00740.x
See also
--------
RandomizedLogisticRegression, LogisticRegression
"""
def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75,
n_resampling=200, selection_threshold=.25,
fit_intercept=True, verbose=False,
normalize=True, precompute='auto',
max_iter=500,
eps=np.finfo(np.float).eps, random_state=None,
n_jobs=1, pre_dispatch='3*n_jobs',
memory=Memory(cachedir=None, verbose=0)):
self.alpha = alpha
self.scaling = scaling
self.sample_fraction = sample_fraction
self.n_resampling = n_resampling
self.fit_intercept = fit_intercept
self.max_iter = max_iter
self.verbose = verbose
self.normalize = normalize
self.precompute = precompute
self.eps = eps
self.random_state = random_state
self.n_jobs = n_jobs
self.selection_threshold = selection_threshold
self.pre_dispatch = pre_dispatch
self.memory = memory
def _make_estimator_and_params(self, X, y):
assert self.precompute in (True, False, None, 'auto')
alpha = self.alpha
if alpha in ('aic', 'bic'):
model = LassoLarsIC(precompute=self.precompute,
criterion=self.alpha,
max_iter=self.max_iter,
eps=self.eps)
model.fit(X, y)
self.alpha_ = alpha = model.alpha_
return _randomized_lasso, dict(alpha=alpha,
max_iter=self.max_iter, eps=self.eps,
precompute=self.precompute)
###############################################################################
# Randomized logistic: classification settings
def _randomized_logistic(X, y, weights, mask, C=1., verbose=False,
fit_intercept=True, tol=1e-3):
X = X[mask]
y = y[mask]
X = (1 - weights) * X
C = np.atleast_1d(np.asarray(C, dtype=np.float))
scores = np.zeros((X.shape[1], len(C)), dtype=np.bool)
for this_C, this_scores in zip(C, scores.T):
# XXX : would be great to do it with a warm_start ...
clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False,
fit_intercept=fit_intercept)
clf.fit(X, y)
this_scores[:] = np.any(
np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0)
return scores
class RandomizedLogisticRegression(BaseRandomizedLinearModel):
"""Randomized Logistic Regression
Randomized Regression works by resampling the train data and computing
a LogisticRegression on each resampling. In short, the features selected
more often are good features. It is also known as stability selection.
Parameters
----------
C : float
The regularization parameter C in the LogisticRegression.
scaling : float
The alpha parameter in the stability selection article used to
randomly scale the features. Should be between 0 and 1.
sample_fraction : float
The fraction of samples to be used in each randomized design.
Should be between 0 and 1. If 1, all samples are used.
fit_intercept : boolean
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
tol : float, optional
tolerance for stopping criteria of LogisticRegression
n_jobs : integer, optional
Number of CPUs to use during the resampling. If '-1', use
all the CPUs
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediatly
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
memory : Instance of joblib.Memory or string
Used for internal caching. By default, no caching is done.
If a string is given, it is thepath to the caching directory.
Attributes
----------
`scores_` : array, shape = [n_features]
Feature scores between 0 and 1.
`all_scores_` : array, shape = [n_features, n_reg_parameter]
Feature scores between 0 and 1 for all values of the regularization \
parameter. The reference article suggests ``scores_`` is the max \
of ``all_scores_``.
Examples
--------
>>> from sklearn.linear_model import RandomizedLogisticRegression
>>> randomized_logistic = RandomizedLogisticRegression()
Notes
-----
See examples/linear_model/plot_randomized_lasso.py for an example.
References
----------
Stability selection
Nicolai Meinshausen, Peter Buhlmann
Journal of the Royal Statistical Society: Series B
Volume 72, Issue 4, pages 417-473, September 2010
DOI: 10.1111/j.1467-9868.2010.00740.x
See also
--------
RandomizedLasso, Lasso, ElasticNet
"""
def __init__(self, C=1, scaling=.5, sample_fraction=.75,
n_resampling=200,
selection_threshold=.25, tol=1e-3,
fit_intercept=True, verbose=False,
normalize=True,
random_state=None,
n_jobs=1, pre_dispatch='3*n_jobs',
memory=Memory(cachedir=None, verbose=0)):
self.C = C
self.scaling = scaling
self.sample_fraction = sample_fraction
self.n_resampling = n_resampling
self.fit_intercept = fit_intercept
self.verbose = verbose
self.normalize = normalize
self.tol = tol
self.random_state = random_state
self.n_jobs = n_jobs
self.selection_threshold = selection_threshold
self.pre_dispatch = pre_dispatch
self.memory = memory
def _make_estimator_and_params(self, X, y):
params = dict(C=self.C, tol=self.tol,
fit_intercept=self.fit_intercept)
return _randomized_logistic, params
def _center_data(self, X, y, fit_intercept, normalize=False):
"""Center the data in X but not in y"""
X, _, Xmean, _, X_std = center_data(X, y, fit_intercept,
normalize=normalize)
return X, y, Xmean, y, X_std
###############################################################################
# Stability paths
def _lasso_stability_path(X, y, mask, weights, eps):
"Inner loop of lasso_stability_path"
X = X * weights[np.newaxis, :]
X = X[mask, :]
y = y[mask]
alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0]
alpha_min = eps * alpha_max # set for early stopping in path
alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False,
alpha_min=alpha_min)
# Scale alpha by alpha_max
alphas /= alphas[0]
# Sort alphas in assending order
alphas = alphas[::-1]
coefs = coefs[:, ::-1]
# Get rid of the alphas that are too small
mask = alphas >= eps
# We also want to keep the first one: it should be close to the OLS
# solution
mask[0] = True
alphas = alphas[mask]
coefs = coefs[:, mask]
return alphas, coefs
def lasso_stability_path(X, y, scaling=0.5, random_state=None,
n_resampling=200, n_grid=100,
sample_fraction=0.75,
eps=4 * np.finfo(np.float).eps, n_jobs=1,
verbose=False):
"""Stabiliy path based on randomized Lasso estimates
Parameters
----------
X : array-like, shape = [n_samples, n_features]
training data.
y : array-like, shape = [n_samples]
target values.
scaling : float
The alpha parameter in the stability selection article used to
randomly scale the features. Should be between 0 and 1.
random_state : integer or numpy.RandomState, optional
The generator used to randomize the design.
n_resampling : int
Number of randomized models.
n_grid : int
Number of grid points. The path is linearly reinterpolated
on a grid between 0 and 1 before computing the scores.
sample_fraction : float
The fraction of samples to be used in each randomized design.
Should be between 0 and 1. If 1, all samples are used.
eps : float
Smallest value of alpha / alpha_max considered
n_jobs : integer, optional
Number of CPUs to use during the resampling. If '-1', use
all the CPUs
verbose : boolean or integer, optional
Sets the verbosity amount
Returns
-------
alphas_grid : array, shape ~ [n_grid]
The grid points between 0 and 1: alpha/alpha_max
scores_path : array, shape = [n_features, n_grid]
The scores for each feature along the path.
Notes
-----
See examples/linear_model/plot_randomized_lasso.py for an example.
"""
rng = check_random_state(random_state)
if not (0 < scaling < 1):
raise ValueError("Parameter 'scaling' should be between 0 and 1."
" Got %r instead." % scaling)
n_samples, n_features = X.shape
paths = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_lasso_stability_path)(X, y,
mask=rng.rand(n_samples) < sample_fraction,
weights=1. - scaling * rng.random_integers(0,
1, size=(n_features,)),
eps=eps)
for k in xrange(n_resampling))
all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths]))))
# Take approximately n_grid values
stride = int(max(1, int(len(all_alphas) / float(n_grid))))
all_alphas = all_alphas[::stride]
if not all_alphas[-1] == 1:
all_alphas.append(1.)
all_alphas = np.array(all_alphas)
scores_path = np.zeros((n_features, len(all_alphas)))
for alphas, coefs in paths:
if alphas[0] != 0:
alphas = np.r_[0, alphas]
coefs = np.c_[np.ones((n_features, 1)), coefs]
if alphas[-1] != all_alphas[-1]:
alphas = np.r_[alphas, all_alphas[-1]]
coefs = np.c_[coefs, np.zeros((n_features, 1))]
scores_path += (interp1d(alphas, coefs,
kind='nearest', bounds_error=False,
fill_value=0, axis=-1)(all_alphas) != 0)
scores_path /= n_resampling
return all_alphas, scores_path
|