File: ridge.py

package info (click to toggle)
scikit-learn 0.20.2%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 51,036 kB
  • sloc: python: 108,171; ansic: 8,722; cpp: 5,651; makefile: 192; sh: 40
file content (1433 lines) | stat: -rw-r--r-- 55,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
"""
Ridge regression
"""

# Author: Mathieu Blondel <mathieu@mblondel.org>
#         Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
#         Fabian Pedregosa <fabian@fseoane.net>
#         Michael Eickenberg <michael.eickenberg@nsup.org>
# License: BSD 3 clause


from abc import ABCMeta, abstractmethod
import warnings

import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg

from .base import LinearClassifierMixin, LinearModel, _rescale_data
from .sag import sag_solver
from ..base import RegressorMixin
from ..utils.extmath import safe_sparse_dot
from ..utils.extmath import row_norms
from ..utils import check_X_y
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import compute_sample_weight
from ..utils import column_or_1d
from ..preprocessing import LabelBinarizer
from ..model_selection import GridSearchCV
from ..externals import six
from ..metrics.scorer import check_scoring
from ..exceptions import ConvergenceWarning


def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0):
    n_samples, n_features = X.shape
    X1 = sp_linalg.aslinearoperator(X)
    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)

    if n_features > n_samples:
        def create_mv(curr_alpha):
            def _mv(x):
                return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
            return _mv
    else:
        def create_mv(curr_alpha):
            def _mv(x):
                return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
            return _mv

    for i in range(y.shape[1]):
        y_column = y[:, i]

        mv = create_mv(alpha[i])
        if n_features > n_samples:
            # kernel ridge
            # w = X.T * inv(X X^t + alpha*Id) y
            C = sp_linalg.LinearOperator(
                (n_samples, n_samples), matvec=mv, dtype=X.dtype)
            # FIXME atol
            try:
                coef, info = sp_linalg.cg(C, y_column, tol=tol, atol='legacy')
            except TypeError:
                # old scipy
                coef, info = sp_linalg.cg(C, y_column, tol=tol)
            coefs[i] = X1.rmatvec(coef)
        else:
            # linear ridge
            # w = inv(X^t X + alpha*Id) * X.T y
            y_column = X1.rmatvec(y_column)
            C = sp_linalg.LinearOperator(
                (n_features, n_features), matvec=mv, dtype=X.dtype)
            # FIXME atol
            try:
                coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
                                              tol=tol, atol='legacy')
            except TypeError:
                # old scipy
                coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
                                              tol=tol)

        if info < 0:
            raise ValueError("Failed with error code %d" % info)

        if max_iter is None and info > 0 and verbose:
            warnings.warn("sparse_cg did not converge after %d iterations." %
                          info, ConvergenceWarning)

    return coefs


def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
    n_samples, n_features = X.shape
    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
    n_iter = np.empty(y.shape[1], dtype=np.int32)

    # According to the lsqr documentation, alpha = damp^2.
    sqrt_alpha = np.sqrt(alpha)

    for i in range(y.shape[1]):
        y_column = y[:, i]
        info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i],
                              atol=tol, btol=tol, iter_lim=max_iter)
        coefs[i] = info[0]
        n_iter[i] = info[2]

    return coefs, n_iter


def _solve_cholesky(X, y, alpha):
    # w = inv(X^t X + alpha*Id) * X.T y
    n_samples, n_features = X.shape
    n_targets = y.shape[1]

    A = safe_sparse_dot(X.T, X, dense_output=True)
    Xy = safe_sparse_dot(X.T, y, dense_output=True)

    one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])

    if one_alpha:
        A.flat[::n_features + 1] += alpha[0]
        return linalg.solve(A, Xy, sym_pos=True,
                            overwrite_a=True).T
    else:
        coefs = np.empty([n_targets, n_features], dtype=X.dtype)
        for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
            A.flat[::n_features + 1] += current_alpha
            coef[:] = linalg.solve(A, target, sym_pos=True,
                                   overwrite_a=False).ravel()
            A.flat[::n_features + 1] -= current_alpha
        return coefs


def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
    # dual_coef = inv(X X^t + alpha*Id) y
    n_samples = K.shape[0]
    n_targets = y.shape[1]

    if copy:
        K = K.copy()

    alpha = np.atleast_1d(alpha)
    one_alpha = (alpha == alpha[0]).all()
    has_sw = isinstance(sample_weight, np.ndarray) \
        or sample_weight not in [1.0, None]

    if has_sw:
        # Unlike other solvers, we need to support sample_weight directly
        # because K might be a pre-computed kernel.
        sw = np.sqrt(np.atleast_1d(sample_weight))
        y = y * sw[:, np.newaxis]
        K *= np.outer(sw, sw)

    if one_alpha:
        # Only one penalty, we can solve multi-target problems in one time.
        K.flat[::n_samples + 1] += alpha[0]

        try:
            # Note: we must use overwrite_a=False in order to be able to
            #       use the fall-back solution below in case a LinAlgError
            #       is raised
            dual_coef = linalg.solve(K, y, sym_pos=True,
                                     overwrite_a=False)
        except np.linalg.LinAlgError:
            warnings.warn("Singular matrix in solving dual problem. Using "
                          "least-squares solution instead.")
            dual_coef = linalg.lstsq(K, y)[0]

        # K is expensive to compute and store in memory so change it back in
        # case it was user-given.
        K.flat[::n_samples + 1] -= alpha[0]

        if has_sw:
            dual_coef *= sw[:, np.newaxis]

        return dual_coef
    else:
        # One penalty per target. We need to solve each target separately.
        dual_coefs = np.empty([n_targets, n_samples], K.dtype)

        for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
            K.flat[::n_samples + 1] += current_alpha

            dual_coef[:] = linalg.solve(K, target, sym_pos=True,
                                        overwrite_a=False).ravel()

            K.flat[::n_samples + 1] -= current_alpha

        if has_sw:
            dual_coefs *= sw[np.newaxis, :]

        return dual_coefs.T


def _solve_svd(X, y, alpha):
    U, s, Vt = linalg.svd(X, full_matrices=False)
    idx = s > 1e-15  # same default value as scipy.linalg.pinv
    s_nnz = s[idx][:, np.newaxis]
    UTy = np.dot(U.T, y)
    d = np.zeros((s.size, alpha.size), dtype=X.dtype)
    d[idx] = s_nnz / (s_nnz ** 2 + alpha)
    d_UT_y = d * UTy
    return np.dot(Vt.T, d_UT_y).T


def ridge_regression(X, y, alpha, sample_weight=None, solver='auto',
                     max_iter=None, tol=1e-3, verbose=0, random_state=None,
                     return_n_iter=False, return_intercept=False):
    """Solve the ridge equation by the method of normal equations.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    X : {array-like, sparse matrix, LinearOperator},
        shape = [n_samples, n_features]
        Training data

    y : array-like, shape = [n_samples] or [n_samples, n_targets]
        Target values

    alpha : {float, array-like},
        shape = [n_targets] if array-like
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number.

    sample_weight : float or numpy array of shape [n_samples]
        Individual weights for each sample. If sample_weight is not None and
        solver='auto', the solver will be set to 'cholesky'.

        .. versionadded:: 0.17

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than
          'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution via a Cholesky decomposition of
          dot(X.T, X)

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.


        All last five solvers support both dense and sparse data. However, only
        'sag' and 'saga' supports sparse input when`fit_intercept` is True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    max_iter : int, optional
        Maximum number of iterations for conjugate gradient solver.
        For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
        1000.

    tol : float
        Precision of the solution.

    verbose : int
        Verbosity level. Setting verbose > 0 will display additional
        information depending on the solver used.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag'.

    return_n_iter : boolean, default False
        If True, the method also returns `n_iter`, the actual number of
        iteration performed by the solver.

        .. versionadded:: 0.17

    return_intercept : boolean, default False
        If True and if X is sparse, the method also returns the intercept,
        and the solver is automatically changed to 'sag'. This is only a
        temporary fix for fitting the intercept with sparse data. For dense
        data, use sklearn.linear_model._preprocess_data before your regression.

        .. versionadded:: 0.17

    Returns
    -------
    coef : array, shape = [n_features] or [n_targets, n_features]
        Weight vector(s).

    n_iter : int, optional
        The actual number of iteration performed by the solver.
        Only returned if `return_n_iter` is True.

    intercept : float or array, shape = [n_targets]
        The intercept of the model. Only returned if `return_intercept`
        is True and if X is a scipy sparse array.

    Notes
    -----
    This function won't compute the intercept.
    """
    if return_intercept and sparse.issparse(X) and solver != 'sag':
        if solver != 'auto':
            warnings.warn("In Ridge, only 'sag' solver can currently fit the "
                          "intercept when X is sparse. Solver has been "
                          "automatically changed into 'sag'.")
        solver = 'sag'

    _dtype = [np.float64, np.float32]

    # SAG needs X and y columns to be C-contiguous and np.float64
    if solver in ['sag', 'saga']:
        X = check_array(X, accept_sparse=['csr'],
                        dtype=np.float64, order='C')
        y = check_array(y, dtype=np.float64, ensure_2d=False, order='F')
    else:
        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
                        dtype=_dtype)
        y = check_array(y, dtype=X.dtype, ensure_2d=False)
    check_consistent_length(X, y)

    n_samples, n_features = X.shape

    if y.ndim > 2:
        raise ValueError("Target y has the wrong shape %s" % str(y.shape))

    ravel = False
    if y.ndim == 1:
        y = y.reshape(-1, 1)
        ravel = True

    n_samples_, n_targets = y.shape

    if n_samples != n_samples_:
        raise ValueError("Number of samples in X and y does not correspond:"
                         " %d != %d" % (n_samples, n_samples_))

    has_sw = sample_weight is not None

    if solver == 'auto':
        # cholesky if it's a dense array and cg in any other case
        if not sparse.issparse(X) or has_sw:
            solver = 'cholesky'
        else:
            solver = 'sparse_cg'

    if has_sw:
        if np.atleast_1d(sample_weight).ndim > 1:
            raise ValueError("Sample weights must be 1D array or scalar")

        if solver not in ['sag', 'saga']:
            # SAG supports sample_weight directly. For other solvers,
            # we implement sample_weight via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

    # There should be either 1 or n_targets penalties
    alpha = np.asarray(alpha, dtype=X.dtype).ravel()
    if alpha.size not in [1, n_targets]:
        raise ValueError("Number of targets and number of penalties "
                         "do not correspond: %d != %d"
                         % (alpha.size, n_targets))

    if alpha.size == 1 and n_targets > 1:
        alpha = np.repeat(alpha, n_targets)

    if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag', 'saga'):
        raise ValueError('Solver %s not understood' % solver)

    n_iter = None
    if solver == 'sparse_cg':
        coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose)

    elif solver == 'lsqr':
        coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)

    elif solver == 'cholesky':
        if n_features > n_samples:
            K = safe_sparse_dot(X, X.T, dense_output=True)
            try:
                dual_coef = _solve_cholesky_kernel(K, y, alpha)

                coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = 'svd'

        else:
            try:
                coef = _solve_cholesky(X, y, alpha)
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = 'svd'

    elif solver in ['sag', 'saga']:
        # precompute max_squared_sum for all targets
        max_squared_sum = row_norms(X, squared=True).max()

        coef = np.empty((y.shape[1], n_features))
        n_iter = np.empty(y.shape[1], dtype=np.int32)
        intercept = np.zeros((y.shape[1], ))
        for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
            init = {'coef': np.zeros((n_features + int(return_intercept), 1))}
            coef_, n_iter_, _ = sag_solver(
                X, target.ravel(), sample_weight, 'squared', alpha_i, 0,
                max_iter, tol, verbose, random_state, False, max_squared_sum,
                init,
                is_saga=solver == 'saga')
            if return_intercept:
                coef[i] = coef_[:-1]
                intercept[i] = coef_[-1]
            else:
                coef[i] = coef_
            n_iter[i] = n_iter_

        if intercept.shape[0] == 1:
            intercept = intercept[0]
        coef = np.asarray(coef)

    if solver == 'svd':
        if sparse.issparse(X):
            raise TypeError('SVD solver does not support sparse'
                            ' inputs currently')
        coef = _solve_svd(X, y, alpha)

    if ravel:
        # When y was passed as a 1d-array, we flatten the coefficients.
        coef = coef.ravel()

    if return_n_iter and return_intercept:
        return coef, n_iter, intercept
    elif return_intercept:
        return coef, intercept
    elif return_n_iter:
        return coef, n_iter
    else:
        return coef


class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)):

    @abstractmethod
    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, solver="auto",
                 random_state=None):
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.copy_X = copy_X
        self.max_iter = max_iter
        self.tol = tol
        self.solver = solver
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):

        if self.solver in ('sag', 'saga'):
            _dtype = np.float64
        else:
            # all other solvers work at both float precision levels
            _dtype = [np.float64, np.float32]

        X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=_dtype,
                         multi_output=True, y_numeric=True)

        if ((sample_weight is not None) and
                np.atleast_1d(sample_weight).ndim > 1):
            raise ValueError("Sample weights must be 1D array or scalar")

        X, y, X_offset, y_offset, X_scale = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        # temporary fix for fitting the intercept with sparse data using 'sag'
        if sparse.issparse(X) and self.fit_intercept:
            self.coef_, self.n_iter_, self.intercept_ = ridge_regression(
                X, y, alpha=self.alpha, sample_weight=sample_weight,
                max_iter=self.max_iter, tol=self.tol, solver=self.solver,
                random_state=self.random_state, return_n_iter=True,
                return_intercept=True)
            self.intercept_ += y_offset
        else:
            self.coef_, self.n_iter_ = ridge_regression(
                X, y, alpha=self.alpha, sample_weight=sample_weight,
                max_iter=self.max_iter, tol=self.tol, solver=self.solver,
                random_state=self.random_state, return_n_iter=True,
                return_intercept=False)
            self._set_intercept(X_offset, y_offset, X_scale)

        return self


class Ridge(_BaseRidge, RegressorMixin):
    """Linear least squares with l2 regularization.

    Minimizes the objective function::

    ||y - Xw||^2_2 + alpha * ||w||^2_2

    This model solves a regression model where the loss function is
    the linear least squares function and regularization is given by
    the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
    This estimator has built-in support for multi-variate regression
    (i.e., when y is a 2d-array of shape [n_samples, n_targets]).

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : {float, array-like}, shape (n_targets)
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, optional
        Maximum number of iterations for conjugate gradient solver.
        For 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.

    tol : float
        Precision of the solution.

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than
          'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

        All last five solvers support both dense and sparse data. However,
        only 'sag' and 'saga' supports sparse input when `fit_intercept` is
        True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag'.

        .. versionadded:: 0.17
           *random_state* to support Stochastic Average Gradient.

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_targets, n_features)
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : array or None, shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

        .. versionadded:: 0.17

    See also
    --------
    RidgeClassifier : Ridge classifier
    RidgeCV : Ridge regression with built-in cross validation
    :class:`sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
        combines ridge regression with the kernel trick

    Examples
    --------
    >>> from sklearn.linear_model import Ridge
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> np.random.seed(0)
    >>> y = np.random.randn(n_samples)
    >>> X = np.random.randn(n_samples, n_features)
    >>> clf = Ridge(alpha=1.0)
    >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE
    Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
          normalize=False, random_state=None, solver='auto', tol=0.001)

    """
    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, solver="auto",
                 random_state=None):
        super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept,
                                    normalize=normalize, copy_X=copy_X,
                                    max_iter=max_iter, tol=tol, solver=solver,
                                    random_state=random_state)

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training data

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values

        sample_weight : float or numpy array of shape [n_samples]
            Individual weights for each sample

        Returns
        -------
        self : returns an instance of self.
        """
        return super(Ridge, self).fit(X, y, sample_weight=sample_weight)


class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
    """Classifier using Ridge regression.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : float
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set to false, no
        intercept will be used in calculations (e.g. data is expected to be
        already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : boolean, optional, default True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, optional
        Maximum number of iterations for conjugate gradient solver.
        The default value is determined by scipy.sparse.linalg.

    tol : float
        Precision of the solution.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than
          'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its unbiased and more flexible version named SAGA. Both methods
          use an iterative procedure, and are often faster than other solvers
          when both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

          .. versionadded:: 0.17
             Stochastic Average Gradient descent solver.
          .. versionadded:: 0.19
           SAGA solver.

    random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`. Used when ``solver`` == 'sag'.

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_classes, n_features)
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : array or None, shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifier
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifier().fit(X, y)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.9595...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifierCV :  Ridge classifier with built-in cross validation

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.
    """

    def __init__(self, alpha=1.0, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, class_weight=None,
                 solver="auto", random_state=None):
        super(RidgeClassifier, self).__init__(
            alpha=alpha, fit_intercept=fit_intercept, normalize=normalize,
            copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver,
            random_state=random_state)
        self.class_weight = class_weight

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples,n_features]
            Training data

        y : array-like, shape = [n_samples]
            Target values

        sample_weight : float or numpy array of shape (n_samples,)
            Sample weight.

            .. versionadded:: 0.17
               *sample_weight* support to Classifier.

        Returns
        -------
        self : returns an instance of self.
        """
        check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
                  multi_output=True)

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith('multilabel'):
            y = column_or_1d(y, warn=True)
        else:
            # we don't (yet) support multi-label classification in Ridge
            raise ValueError(
                "%s doesn't support multi-label classification" % (
                    self.__class__.__name__))

        if self.class_weight:
            if sample_weight is None:
                sample_weight = 1.
            # modify the sample weights with the corresponding class weight
            sample_weight = (sample_weight *
                             compute_sample_weight(self.class_weight, y))

        super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight)
        return self

    @property
    def classes_(self):
        return self._label_binarizer.classes_


class _RidgeGCV(LinearModel):
    """Ridge regression with built-in Generalized Cross-Validation

    It allows efficient Leave-One-Out cross-validation.

    This class is not intended to be used directly. Use RidgeCV instead.

    Notes
    -----

    We want to solve (K + alpha*Id)c = y,
    where K = X X^T is the kernel matrix.

    Let G = (K + alpha*Id)^-1.

    Dual solution: c = Gy
    Primal solution: w = X^T c

    Compute eigendecomposition K = Q V Q^T.
    Then G = Q (V + alpha*Id)^-1 Q^T,
    where (V + alpha*Id) is diagonal.
    It is thus inexpensive to inverse for many alphas.

    Let loov be the vector of prediction values for each example
    when the model was fitted with all examples but this example.

    loov = (KGY - diag(KG)Y) / diag(I-KG)

    Let looe be the vector of prediction errors for each example
    when the model was fitted with all examples but this example.

    looe = y - loov = c / diag(G)

    References
    ----------
    http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
    https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
    """

    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False,
                 scoring=None, copy_X=True,
                 gcv_mode=None, store_cv_values=False):
        self.alphas = np.asarray(alphas)
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.scoring = scoring
        self.copy_X = copy_X
        self.gcv_mode = gcv_mode
        self.store_cv_values = store_cv_values

    def _pre_compute(self, X, y, centered_kernel=True):
        # even if X is very sparse, K is usually very dense
        K = safe_sparse_dot(X, X.T, dense_output=True)
        # the following emulates an additional constant regressor
        # corresponding to fit_intercept=True
        # but this is done only when the features have been centered
        if centered_kernel:
            K += np.ones_like(K)
        v, Q = linalg.eigh(K)
        QT_y = np.dot(Q.T, y)
        return v, Q, QT_y

    def _decomp_diag(self, v_prime, Q):
        # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
        return (v_prime * Q ** 2).sum(axis=-1)

    def _diag_dot(self, D, B):
        # compute dot(diag(D), B)
        if len(B.shape) > 1:
            # handle case where B is > 1-d
            D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)]
        return D * B

    def _errors_and_values_helper(self, alpha, y, v, Q, QT_y):
        """Helper function to avoid code duplication between self._errors and
        self._values.

        Notes
        -----
        We don't construct matrix G, instead compute action on y & diagonal.
        """
        w = 1. / (v + alpha)
        constant_column = np.var(Q, 0) < 1.e-12
        # detect constant columns
        w[constant_column] = 0  # cancel the regularization for the intercept

        c = np.dot(Q, self._diag_dot(w, QT_y))
        G_diag = self._decomp_diag(w, Q)
        # handle case where y is 2-d
        if len(y.shape) != 1:
            G_diag = G_diag[:, np.newaxis]
        return G_diag, c

    def _errors(self, alpha, y, v, Q, QT_y):
        G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y)
        return (c / G_diag) ** 2, c

    def _values(self, alpha, y, v, Q, QT_y):
        G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y)
        return y - (c / G_diag), c

    def _pre_compute_svd(self, X, y, centered_kernel=True):
        if sparse.issparse(X):
            raise TypeError("SVD not supported for sparse matrices")
        if centered_kernel:
            X = np.hstack((X, np.ones((X.shape[0], 1))))
        # to emulate fit_intercept=True situation, add a column on ones
        # Note that by centering, the other columns are orthogonal to that one
        U, s, _ = linalg.svd(X, full_matrices=0)
        v = s ** 2
        UT_y = np.dot(U.T, y)
        return v, U, UT_y

    def _errors_and_values_svd_helper(self, alpha, y, v, U, UT_y):
        """Helper function to avoid code duplication between self._errors_svd
        and self._values_svd.
        """
        constant_column = np.var(U, 0) < 1.e-12
        # detect columns colinear to ones
        w = ((v + alpha) ** -1) - (alpha ** -1)
        w[constant_column] = - (alpha ** -1)
        # cancel the regularization for the intercept
        c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
        G_diag = self._decomp_diag(w, U) + (alpha ** -1)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            G_diag = G_diag[:, np.newaxis]
        return G_diag, c

    def _errors_svd(self, alpha, y, v, U, UT_y):
        G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y)
        return (c / G_diag) ** 2, c

    def _values_svd(self, alpha, y, v, U, UT_y):
        G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y)
        return y - (c / G_diag), c

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            Training data

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values. Will be cast to X's dtype if necessary

        sample_weight : float or array-like of shape [n_samples]
            Sample weight

        Returns
        -------
        self : object
        """
        X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64,
                         multi_output=True, y_numeric=True)
        if sample_weight is not None and not isinstance(sample_weight, float):
            sample_weight = check_array(sample_weight, ensure_2d=False)
        n_samples, n_features = X.shape

        X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        gcv_mode = self.gcv_mode
        with_sw = len(np.shape(sample_weight))

        if gcv_mode is None or gcv_mode == 'auto':
            if sparse.issparse(X) or n_features > n_samples or with_sw:
                gcv_mode = 'eigen'
            else:
                gcv_mode = 'svd'
        elif gcv_mode == "svd" and with_sw:
            # FIXME non-uniform sample weights not yet supported
            warnings.warn("non-uniform sample weights unsupported for svd, "
                          "forcing usage of eigen")
            gcv_mode = 'eigen'

        if gcv_mode == 'eigen':
            _pre_compute = self._pre_compute
            _errors = self._errors
            _values = self._values
        elif gcv_mode == 'svd':
            # assert n_samples >= n_features
            _pre_compute = self._pre_compute_svd
            _errors = self._errors_svd
            _values = self._values_svd
        else:
            raise ValueError('bad gcv_mode "%s"' % gcv_mode)

        if sample_weight is not None:
            X, y = _rescale_data(X, y, sample_weight)

        centered_kernel = not sparse.issparse(X) and self.fit_intercept

        v, Q, QT_y = _pre_compute(X, y, centered_kernel)
        n_y = 1 if len(y.shape) == 1 else y.shape[1]
        cv_values = np.zeros((n_samples * n_y, len(self.alphas)))
        C = []

        scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
        error = scorer is None

        if np.any(self.alphas < 0):
            raise ValueError("alphas cannot be negative. "
                             "Got {} containing some "
                             "negative value instead.".format(self.alphas))

        for i, alpha in enumerate(self.alphas):
            if error:
                out, c = _errors(float(alpha), y, v, Q, QT_y)
            else:
                out, c = _values(float(alpha), y, v, Q, QT_y)
            cv_values[:, i] = out.ravel()
            C.append(c)

        if error:
            best = cv_values.mean(axis=0).argmin()
        else:
            # The scorer want an object that will make the predictions but
            # they are already computed efficiently by _RidgeGCV. This
            # identity_estimator will just return them
            def identity_estimator():
                pass
            identity_estimator.decision_function = lambda y_predict: y_predict
            identity_estimator.predict = lambda y_predict: y_predict

            out = [scorer(identity_estimator, y.ravel(), cv_values[:, i])
                   for i in range(len(self.alphas))]
            best = np.argmax(out)

        self.alpha_ = self.alphas[best]
        self.dual_coef_ = C[best]
        self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)

        self._set_intercept(X_offset, y_offset, X_scale)

        if self.store_cv_values:
            if len(y.shape) == 1:
                cv_values_shape = n_samples, len(self.alphas)
            else:
                cv_values_shape = n_samples, n_y, len(self.alphas)
            self.cv_values_ = cv_values.reshape(cv_values_shape)

        return self


class _BaseRidgeCV(LinearModel):
    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False, scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):
        self.alphas = np.asarray(alphas)
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.scoring = scoring
        self.cv = cv
        self.gcv_mode = gcv_mode
        self.store_cv_values = store_cv_values

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data

        y : array-like, shape = [n_samples] or [n_samples, n_targets]
            Target values. Will be cast to X's dtype if necessary

        sample_weight : float or array-like of shape [n_samples]
            Sample weight

        Returns
        -------
        self : object
        """
        if self.cv is None:
            estimator = _RidgeGCV(self.alphas,
                                  fit_intercept=self.fit_intercept,
                                  normalize=self.normalize,
                                  scoring=self.scoring,
                                  gcv_mode=self.gcv_mode,
                                  store_cv_values=self.store_cv_values)
            estimator.fit(X, y, sample_weight=sample_weight)
            self.alpha_ = estimator.alpha_
            if self.store_cv_values:
                self.cv_values_ = estimator.cv_values_
        else:
            if self.store_cv_values:
                raise ValueError("cv!=None and store_cv_values=True "
                                 " are incompatible")
            parameters = {'alpha': self.alphas}
            gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept,
                                    normalize=self.normalize),
                              parameters, cv=self.cv, scoring=self.scoring)
            gs.fit(X, y, sample_weight=sample_weight)
            estimator = gs.best_estimator_
            self.alpha_ = gs.best_estimator_.alpha

        self.coef_ = estimator.coef_
        self.intercept_ = estimator.intercept_

        return self


class RidgeCV(_BaseRidgeCV, RegressorMixin):
    """Ridge regression with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Generalized Cross-Validation, which is a form of
    efficient Leave-One-Out cross-validation.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : numpy array of shape [n_alphas]
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if ``y`` is binary or multiclass,
        :class:`sklearn.model_selection.StratifiedKFold` is used, else,
        :class:`sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    gcv_mode : {None, 'auto', 'svd', eigen'}, optional
        Flag indicating which strategy to use when performing
        Generalized Cross-Validation. Options are::

            'auto' : use svd if n_samples > n_features or when X is a sparse
                     matrix, otherwise use eigen
            'svd' : force computation via singular value decomposition of X
                    (does not work for sparse matrices)
            'eigen' : force computation via eigendecomposition of X^T X

        The 'auto' mode is the default and is intended to pick the cheaper
        option of the two depending upon the shape and format of the training
        data.

    store_cv_values : boolean, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Generalized Cross-Validation).

    Attributes
    ----------
    cv_values_ : array, shape = [n_samples, n_alphas] or \
        shape = [n_samples, n_targets, n_alphas], optional
        Cross-validation values for each alpha (if ``store_cv_values=True``\
        and ``cv=None``). After ``fit()`` has been called, this attribute \
        will contain the mean squared errors (by default) or the values \
        of the ``{loss,score}_func`` function (if provided in the constructor).

    coef_ : array, shape = [n_features] or [n_targets, n_features]
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.linear_model import RidgeCV
    >>> X, y = load_diabetes(return_X_y=True)
    >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.5166...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifier : Ridge classifier
    RidgeClassifierCV : Ridge classifier with built-in cross validation
    """
    pass


class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
    """Ridge classifier with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Generalized Cross-Validation, which is a form of
    efficient Leave-One-Out cross-validation. Currently, only the n_features >
    n_samples case is handled efficiently.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : numpy array of shape [n_alphas]
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``C^-1`` in other linear models such as
        LogisticRegression or LinearSVC.

    fit_intercept : boolean
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (e.g. data is expected to be already centered).

    normalize : boolean, optional, default False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    class_weight : dict or 'balanced', optional
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    store_cv_values : boolean, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Generalized Cross-Validation).

    Attributes
    ----------
    cv_values_ : array, shape = [n_samples, n_targets, n_alphas], optional
        Cross-validation values for each alpha (if ``store_cv_values=True`` and
        ``cv=None``). After ``fit()`` has been called, this attribute will
        contain the mean squared errors (by default) or the values of the
        ``{loss,score}_func`` function (if provided in the constructor).

    coef_ : array, shape = [n_features] or [n_targets, n_features]
        Weight vector(s).

    intercept_ : float | array, shape = (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifierCV
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y) # doctest: +ELLIPSIS
    0.9630...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifier : Ridge classifier
    RidgeCV : Ridge regression with built-in cross validation

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.
    """

    def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True,
                 normalize=False, scoring=None, cv=None, class_weight=None,
                 store_cv_values=False):
        super(RidgeClassifierCV, self).__init__(
            alphas=alphas, fit_intercept=fit_intercept, normalize=normalize,
            scoring=scoring, cv=cv, store_cv_values=store_cv_values)
        self.class_weight = class_weight

    def fit(self, X, y, sample_weight=None):
        """Fit the ridge classifier.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target values. Will be cast to X's dtype if necessary

        sample_weight : float or numpy array of shape (n_samples,)
            Sample weight.

        Returns
        -------
        self : object
        """
        check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
                  multi_output=True)

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith('multilabel'):
            y = column_or_1d(y, warn=True)

        if self.class_weight:
            if sample_weight is None:
                sample_weight = 1.
            # modify the sample weights with the corresponding class weight
            sample_weight = (sample_weight *
                             compute_sample_weight(self.class_weight, y))

        _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight)
        return self

    @property
    def classes_(self):
        return self._label_binarizer.classes_