1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
// ==========================================================================
// Mason - A Read Simulator
// ==========================================================================
// Copyright (c) 2006-2016, Knut Reinert, FU Berlin
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Knut Reinert or the FU Berlin nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL KNUT REINERT OR THE FU BERLIN BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//
// ==========================================================================
// Author: Manuel Holtgrewe <manuel.holtgrewe@fu-berlin.de>
// ==========================================================================
#include "sequencing.h"
// Maximal homopolymer length we will observe.
const unsigned MAX_HOMOPOLYMER_LEN = 40;
// ===========================================================================
// Class ThresholdMatrix
// ===========================================================================
// 454 Model
class ThresholdMatrix
{
public:
// The scaling parameter k.
double _k;
// Whether or not to use the sqrt for the std deviation computation.
bool _useSqrt;
// Mean of the log normally distributed noise.
double _noiseMu;
// Standard deviation of the log normally distributed noise.
double _noiseSigma;
// The edge length of the matrix.
mutable unsigned _size;
// The data of the matrix.
mutable seqan::String<double> _data;
ThresholdMatrix()
: _k(0), _useSqrt(false), _noiseMu(0), _noiseSigma(0), _size(0)
{}
ThresholdMatrix(double k, bool useSqrt, double noiseMu, double noiseSigma)
: _k(k), _useSqrt(useSqrt), _noiseMu(noiseMu), _noiseSigma(noiseSigma), _size(0)
{}
inline double
computeThreshold(unsigned r1, unsigned r2) const
{
if (r1 > r2)
return computeThreshold(r2, r1);
// The epsilon we use for convergence detection.
const double EPSILON = 0.00001;
// In i, we will count the number of iterations so we can limit the maximal
// number of iterations.
unsigned i = 0;
// f1 is the density function for r1 and f2 the density function for r2.
// Pick left such that f1(left) > f2(left).
double left = r1;
if (left == 0) left = 0.23;
while (dispatchDensityFunction(r1, left) <= dispatchDensityFunction(r2, left))
left /= 2.0;
// And pick right such that f1(right) < f2(right).
double right = r2;
if (right == 0) right = 0.5;
while (dispatchDensityFunction(r1, right) >= dispatchDensityFunction(r2, right))
right *= 2.;
// Now, search for the intersection point.
while (true)
{
SEQAN_ASSERT_LT_MSG(i, 1000u, "Too many iterations (%u)! r1 = %u, r2 = %u.", i, r1, r2);
i += 1;
double center = (left + right) / 2;
double fCenter1 = dispatchDensityFunction(r1, center);
double fCenter2 = dispatchDensityFunction(r2, center);
double delta = fabs(fCenter1 - fCenter2);
if (delta < EPSILON)
return center;
if (fCenter1 < fCenter2)
right = center;
else
left = center;
}
}
inline void
extendThresholds(unsigned dim) const
{
// Allocate new data array for matrix. Then compute values or copy
// over existing ones.
seqan::String<double> newData;
resize(newData, dim * dim);
for (unsigned i = 0; i < dim; ++i) {
for (unsigned j = 0; j < dim; ++j) {
if (i == j)
continue;
if (i < _size && j < _size)
newData[i * dim + j] = _data[i * _size + j];
else
newData[i * dim + j] = computeThreshold(i, j);
}
}
// Update matrix.
assign(_data, newData);
_size = dim;
}
inline double
getThreshold(unsigned r1, unsigned r2) const
{
if (_size <= r1 || _size <= r2)
extendThresholds(std::max(r1, r2) + 1);
return _data[r1 * _size + r2];
}
inline void
setK(double k)
{
_k = k;
}
inline void
setUseSqrt(bool useSqrt)
{
_useSqrt = useSqrt;
}
inline void
setNoiseMu(double mu)
{
_noiseMu = mu;
}
inline void
setNoiseSigma(double sigma)
{
_noiseSigma = sigma;
}
inline void
setNoiseMeanStdDev(double mean, double stdDev)
{
auto tmp = seqan::cvtLogNormalDistParam(mean, stdDev);
_noiseMu = tmp.m();
_noiseSigma = tmp.s();
}
inline double
normalDensityF(double x, double mu, double sigma) const
{
const double PI = 3.14159265;
double sigma2 = sigma * sigma;
return exp(- (x - mu) * (x - mu) / (2 * sigma2)) / sqrt(2 * PI * sigma2);
}
inline double
lognormalDensityF(double x, double mu, double sigma) const
{
if (x <= 0)
return 0;
const double PI = 3.14159265;
double sigma2 = sigma * sigma;
double log_mu2 = (log(x) - mu) * (log(x) - mu);
return exp(-log_mu2 / (2 * sigma2)) / (x * sigma * sqrt(2 * PI));
}
inline double
dispatchDensityFunction(unsigned r, double x) const
{
if (r == 0) {
return lognormalDensityF(x, _noiseMu, _noiseSigma);
} else {
double rd = static_cast<double>(r);
return normalDensityF(x, rd, (_useSqrt ? sqrt(rd) : rd));
}
}
};
// ===========================================================================
// Class Roche454Model
// ===========================================================================
// Stores the threshold matrix.
class Roche454Model
{
public:
ThresholdMatrix thresholdMatrix;
};
// ===========================================================================
// Class Roche454SequencingSimulator
// ===========================================================================
// ---------------------------------------------------------------------------
// Constructor Roche454SequencingSimulator::Roche454SequencingSimulator()
// ---------------------------------------------------------------------------
Roche454SequencingSimulator::Roche454SequencingSimulator(
TRng & rng,
TRng & methRng,
SequencingOptions const & seqOptions,
Roche454SequencingOptions const & roche454Options) :
SequencingSimulator(rng, methRng, seqOptions), roche454Options(roche454Options), model(new Roche454Model())
{
_initModel();
}
// ---------------------------------------------------------------------------
// Function Roche454SequencingSimulator::_initModel()
// ---------------------------------------------------------------------------
// Initialize the threshold matrix.
void Roche454SequencingSimulator::_initModel()
{
model->thresholdMatrix.setK(roche454Options.k);
model->thresholdMatrix.setUseSqrt(roche454Options.sqrtInStdDev);
model->thresholdMatrix.setNoiseMeanStdDev(roche454Options.backgroundNoiseMean, roche454Options.backgroundNoiseStdDev);
}
// ---------------------------------------------------------------------------
// Function Roche454SequencingSimulator::readLength()
// ---------------------------------------------------------------------------
unsigned Roche454SequencingSimulator::readLength()
{
if (roche454Options.lengthModel == Roche454SequencingOptions::UNIFORM)
{
// Pick uniformly.
double minLen = roche454Options.minReadLength;
double maxLen = roche454Options.maxReadLength;
std::uniform_real_distribution<double> dist(minLen, maxLen);
double len = dist(rng);
return static_cast<unsigned>(round(len));
}
else
{
// Pick normally distributed.
std::normal_distribution<double> dist(roche454Options.meanReadLength,
roche454Options.stdDevReadLength);
double len = dist(rng);
return static_cast<unsigned>(round(len));
}
}
// ---------------------------------------------------------------------------
// Function Roche454SequencingSimulator::simulateRead()
// ---------------------------------------------------------------------------
void Roche454SequencingSimulator::simulateRead(
TRead & seq, TQualities & quals, SequencingSimulationInfo & info,
TFragment const & frag, Direction dir, Strand strand)
{
clear(seq);
clear(quals);
// Compute read length and check whether it fits in fragment.
unsigned sampleLength = this->readLength();
if (sampleLength > length(frag))
{
throw std::runtime_error("454 read is too long, increase fragment length");
}
// Get a copy of the to be sequenced base stretch.
TRead haplotypeInfix;
if (dir == LEFT)
haplotypeInfix = prefix(frag, sampleLength);
else
haplotypeInfix = suffix(frag, length(frag) - sampleLength);
if (strand == REVERSE)
reverseComplement(haplotypeInfix);
// In the flow cell simulation, we will simulate light intensities which will be stored in observedIntensities.
seqan::String<double> observedIntensities;
reserve(observedIntensities, 4 * sampleLength);
seqan::Dna5String observedBases;
// We also store the real homopolymer length.
seqan::String<unsigned> realBaseCount;
// Probability density function to use for the background noise.
std::lognormal_distribution<double> distNoise(seqan::cvtLogNormalDistParam(roche454Options.backgroundNoiseMean,
roche454Options.backgroundNoiseStdDev));
// Initialize information about the current homopolymer length.
unsigned homopolymerLength = 0;
seqan::Dna homopolymerType = haplotypeInfix[0];
while (homopolymerLength < length(haplotypeInfix) && haplotypeInfix[homopolymerLength] == homopolymerType)
++homopolymerLength;
// Simulate flowcell.
for (unsigned i = 0, j = 0; i < sampleLength; ++j, j = j % 4) // i indicates first pos of current homopolymer, j indicates flow phase
{
if (ordValue(homopolymerType) == j)
{
// Simulate positive flow observation.
double l = homopolymerLength;
double sigma = roche454Options.k * (roche454Options.sqrtInStdDev ? sqrt(l) : l);
std::normal_distribution<double> distIntensity(homopolymerLength, sigma);
double intensity = distIntensity(rng);
intensity += distNoise(rng); // Add noise.
appendValue(observedIntensities, intensity);
appendValue(realBaseCount, homopolymerLength);
// Get begin pos and length of next homopolymer.
i += homopolymerLength;
if (i < length(haplotypeInfix))
{
homopolymerType = haplotypeInfix[i];
homopolymerLength = 0;
while (((i + homopolymerLength) < length(haplotypeInfix)) && haplotypeInfix[i + homopolymerLength] == homopolymerType)
++homopolymerLength;
}
}
else
{
// Simulate negative flow observation.
//
// Constants taken from MetaSim paper which have it from the
// original 454 publication.
double intensity = std::max(0.0, distNoise(rng));
appendValue(observedIntensities, intensity);
appendValue(realBaseCount, 0);
}
}
seqan::String<seqan::CigarElement<> > cigar;
// Call bases, from this build the edit string and maybe qualities. We only support the "inter" base calling
// method which was published by the MetaSim authors in the PLOS paper.
typedef seqan::Iterator<seqan::String<double>, seqan::Standard>::Type IntensitiesIterator;
int i = 0; // Flow round, Dna(i % 4) gives base.
for (IntensitiesIterator it = begin(observedIntensities); it != end(observedIntensities); ++it, ++i)
{
double threshold = model->thresholdMatrix.getThreshold(static_cast<unsigned>(floor(*it)), static_cast<unsigned>(ceil(*it)));
unsigned calledBaseCount = static_cast<unsigned>(*it < threshold ? floor(*it) : ceil(*it));
// Add any matches.
unsigned j = 0;
for (; j < std::min(calledBaseCount, realBaseCount[i]); ++j)
{
appendOperation(cigar, 'M');
appendValue(seq, seqan::Dna(i % 4));
}
// Add insertions, if any.
for (; j < calledBaseCount; ++j)
{
appendOperation(cigar, 'I');
appendValue(seq, seqan::Dna(i % 4));
}
// Add deletions, if any.
for (; j < realBaseCount[i]; ++j)
appendOperation(cigar, 'D');
// Simulate qualities if configured to do so.
if (seqOptions->simulateQualities)
{
// Compute likelihood for calling the bases, given this intensity and the Phred score from this.
double densitySum = 0;
for (unsigned j = 0; j <= std::max(4u, 2 * MAX_HOMOPOLYMER_LEN); ++j) // Anecdotally through plot in maple: Enough to sum up to 4 or 2 times the maximal homopolymer length.
densitySum += model->thresholdMatrix.dispatchDensityFunction(j, *it);
double x = 0; // Probability of seeing < (j+1) bases.
for (unsigned j = 0; j < calledBaseCount; ++j) {
x += model->thresholdMatrix.dispatchDensityFunction(j, *it);
int q = -static_cast<int>(10 * ::std::log10(x / densitySum));
q = std::max(0, std::min(40, q));
appendValue(quals, (char)('!' + q));
}
}
}
// Write out extended sequencing information info if configured to do so. We always write out the sample position
// and alignment information.
info.cigar = cigar;
unsigned len = 0;
_getLengthInRef(len, cigar);
info.beginPos = (dir == LEFT) ? beginPosition(frag) : (beginPosition(frag) + length(frag) - len);
info.isForward = (strand == FORWARD);
if (seqOptions->embedReadInfo)
{
if (dir == LEFT)
info.sampleSequence = prefix(frag, len);
else
info.sampleSequence = suffix(frag, length(frag) - len);
if (strand == REVERSE)
reverseComplement(info.sampleSequence);
}
}
|