1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
|
/*++
Module Name:
PairedAligner.cpp
Abstract:
Functions for running the paired end aligner sub-program.
Authors:
Matei Zaharia, February, 2012
Environment:
User mode service.
Revision History:
Adapted from cSNAP, which was in turn adapted from the scala prototype
--*/
//
// TODO: This is really similar to the single-end aligner overall. It would be nice
// to avoid code duplication.
//
#include "stdafx.h"
#include "options.h"
#include <time.h>
#include "Compat.h"
#include "RangeSplitter.h"
#include "GenomeIndex.h"
#include "SAM.h"
#include "ChimericPairedEndAligner.h"
#include "Tables.h"
#include "AlignerOptions.h"
#include "AlignerContext.h"
#include "AlignerStats.h"
#include "FASTQ.h"
#include "PairedAligner.h"
#include "MultiInputReadSupplier.h"
#include "Util.h"
#include "IntersectingPairedEndAligner.h"
#include "exit.h"
#include "Error.h"
using namespace std;
using util::stringEndsWith;
static const int DEFAULT_MIN_SPACING = 0;
static const int DEFAULT_MAX_SPACING = 1000;
static const int DEFAULT_MAX_HITS_FOR_UNDERLYING_SINGLE_END_ALIGNER = 25;
struct PairedAlignerStats : public AlignerStats
{
// TODO: make these constants configurable
static const int MAX_DISTANCE = 1000;
static const int MAX_SCORE = 15;
_int64* distanceCounts; // histogram of distances
// TODO: could save a bit of memory & time since this is a triangular matrix
_int64* scoreCounts; // 2-d histogram of scores for paired ends
static const unsigned maxMapq = 70;
static const unsigned nTimeBuckets = 32;
static const unsigned nHitsBuckets = 32;
static const unsigned nLVCallsBuckets = 32;
_int64 alignTogetherByMapqHistogram[maxMapq+1][nTimeBuckets];
_int64 totalTimeByMapqHistogram[maxMapq+1][nTimeBuckets];
_int64 nSmallHitsByTimeHistogram[nHitsBuckets][nTimeBuckets];
_int64 nLVCallsByTimeHistogram[nLVCallsBuckets][nTimeBuckets];
_int64 mapqByNLVCallsHistogram[maxMapq+1][nLVCallsBuckets];
_int64 mapqByNSmallHitsHistogram[maxMapq+1][nHitsBuckets];
PairedAlignerStats(AbstractStats* i_extra = NULL);
virtual ~PairedAlignerStats();
inline void incrementDistance(int distance) {
distanceCounts[max(0, min(MAX_DISTANCE, distance))]++;
}
inline void incrementScore(int s0, int s1)
{
// ensure s0 <= s1, both within range
s0 = max(0, min(MAX_SCORE, s0));
s1 = max(0, min(MAX_SCORE, s1));
if (s0 > s1) {
int t = s0; s0 = s1; s1 = t;
}
scoreCounts[s0*(MAX_SCORE+1)+s1]++;
}
inline void recordAlignTogetherMapqAndTime(unsigned mapq, _int64 timeInNanos, unsigned nSmallHits, unsigned nLVCalls) {
int timeBucket;
_int64 dividedTime = timeInNanos;
for (timeBucket = 0; timeBucket < nTimeBuckets-1; timeBucket++) {
if (dividedTime == 0) break;
dividedTime /= 2;
}
alignTogetherByMapqHistogram[mapq][timeBucket]++;
totalTimeByMapqHistogram[mapq][timeBucket] += timeInNanos;
int nHitsBucket;
int dividedHits = nSmallHits;
for (nHitsBucket = 0; nHitsBucket < nHitsBuckets; nHitsBucket++) {
if (0 == dividedHits) break;
dividedHits /= 2;
}
_ASSERT((char *)&nSmallHitsByTimeHistogram[nHitsBucket][timeBucket] < (char *)(this + 1));
nSmallHitsByTimeHistogram[nHitsBucket][timeBucket]++;
int nLVCallsBucket;
int dividedLVCalls = nLVCalls;
for (nLVCallsBucket = 0; nLVCallsBucket < nLVCallsBuckets; nLVCallsBucket++) {
if (dividedLVCalls == 0) break;
dividedLVCalls /= 2;
}
_ASSERT((char *)&nLVCallsByTimeHistogram[nLVCallsBucket][timeBucket] < (char *)(this + 1));
nLVCallsByTimeHistogram[nLVCallsBucket][timeBucket]++;
_ASSERT((char *)&mapqByNLVCallsHistogram[mapq][nLVCallsBucket] < (char *)(this + 1));
mapqByNLVCallsHistogram[mapq][nLVCallsBucket]++;
_ASSERT((char *)&mapqByNSmallHitsHistogram[mapq][nHitsBucket] < (char *)(this + 1));
mapqByNSmallHitsHistogram[mapq][nHitsBucket]++;
}
virtual void add(const AbstractStats * other);
virtual void printHistograms(FILE* output);
};
const int PairedAlignerStats::MAX_DISTANCE;
const int PairedAlignerStats::MAX_SCORE;
PairedAlignerStats::PairedAlignerStats(AbstractStats* i_extra)
: AlignerStats(i_extra)
{
int dsize = sizeof(_int64) * (MAX_DISTANCE+1);
distanceCounts = (_int64*)BigAlloc(dsize);
memset(distanceCounts, 0, dsize);
int ssize = sizeof(_int64) * (MAX_SCORE+1)*(MAX_SCORE+1);
scoreCounts = (_int64*)BigAlloc(ssize);
memset(scoreCounts, 0, ssize);
for (unsigned mapq = 0; mapq <= maxMapq; mapq++) {
for (unsigned timeBucket = 0; timeBucket < nTimeBuckets; timeBucket++) {
alignTogetherByMapqHistogram[mapq][timeBucket] = 0;
totalTimeByMapqHistogram[mapq][timeBucket] = 0;
}
for (unsigned smallHits = 0; smallHits < nHitsBuckets; smallHits++) {
mapqByNSmallHitsHistogram[mapq][smallHits] = 0;
}
for (unsigned lvCalls = 0; lvCalls < nLVCallsBuckets; lvCalls++) {
mapqByNLVCallsHistogram[mapq][lvCalls] = 0;
}
}
for (unsigned timeBucket = 0; timeBucket < nTimeBuckets; timeBucket++) {
for (unsigned smallHits = 0; smallHits < nHitsBuckets; smallHits++) {
nSmallHitsByTimeHistogram[smallHits][timeBucket] = 0;
}
for (unsigned lvCalls = 0; lvCalls < nLVCallsBuckets; lvCalls++) {
nLVCallsByTimeHistogram[lvCalls][timeBucket] = 0;
}
}
}
PairedAlignerStats::~PairedAlignerStats()
{
BigDealloc(distanceCounts);
BigDealloc(scoreCounts);
}
void PairedAlignerStats::add(const AbstractStats * i_other)
{
AlignerStats::add(i_other);
PairedAlignerStats* other = (PairedAlignerStats*) i_other;
for (int i = 0; i < MAX_DISTANCE + 1; i++) {
distanceCounts[i] += other->distanceCounts[i];
}
for (int i = 0; i < (MAX_SCORE + 1) * (MAX_SCORE + 1); i++) {
scoreCounts[i] += other->scoreCounts[i];
}
for (unsigned mapq = 0; mapq <= maxMapq; mapq++) {
for (unsigned timeBucket = 0; timeBucket < nTimeBuckets; timeBucket++) {
alignTogetherByMapqHistogram[mapq][timeBucket] += other->alignTogetherByMapqHistogram[mapq][timeBucket];
totalTimeByMapqHistogram[mapq][timeBucket] += other->totalTimeByMapqHistogram[mapq][timeBucket];
}
for (unsigned smallHits = 0; smallHits < nHitsBuckets; smallHits++) {
mapqByNSmallHitsHistogram[mapq][smallHits] += other->mapqByNSmallHitsHistogram[mapq][smallHits];
}
for (unsigned lvCalls = 0; lvCalls < nLVCallsBuckets; lvCalls++) {
mapqByNLVCallsHistogram[mapq][lvCalls] += other->mapqByNLVCallsHistogram[mapq][lvCalls];
}
}
for (unsigned timeBucket = 0; timeBucket < nTimeBuckets; timeBucket++) {
for (unsigned smallHits = 0; smallHits < nHitsBuckets; smallHits++) {
nSmallHitsByTimeHistogram[smallHits][timeBucket] += other->nSmallHitsByTimeHistogram[smallHits][timeBucket];
}
for (unsigned lvCalls = 0; lvCalls < nLVCallsBuckets; lvCalls++) {
nLVCallsByTimeHistogram[lvCalls][timeBucket] += other->nLVCallsByTimeHistogram[lvCalls][timeBucket];
}
}
} // PairedAlignerStats::add
void PairedAlignerStats::printHistograms(FILE* output)
{
AlignerStats::printHistograms(output);
}
PairedAlignerOptions::PairedAlignerOptions(const char* i_commandLine)
: AlignerOptions(i_commandLine, true),
minSpacing(DEFAULT_MIN_SPACING),
maxSpacing(DEFAULT_MAX_SPACING),
forceSpacing(false),
intersectingAlignerMaxHits(DEFAULT_INTERSECTING_ALIGNER_MAX_HITS),
maxCandidatePoolSize(DEFAULT_MAX_CANDIDATE_POOL_SIZE),
quicklyDropUnpairedReads(true),
inferSpacing(false),
maxSeedsSingleEnd(DEFAULT_MAX_HITS_FOR_UNDERLYING_SINGLE_END_ALIGNER),
minScoreRealignment(3),
minScoreGapRealignmentALT(3),
minAGScoreImprovement(15)
{
}
void PairedAlignerOptions::usageMessage()
{
AlignerOptions::usageMessage();
WriteErrorMessage(
"\n"
" -s min and max spacing to allow between paired ends (default: %d %d).\n"
" If it can't find an alignment in that range, it will run both reads\n"
" through the single-end aligner.\n"
" -ins Infer inter-read spacing by periodially looking at the observed distances\n"
" -fs force spacing to lie between min and max.\n"
" -H max hits for intersecting aligner (default: %d).\n"
" -mcp specifies the maximum candidate pool size (An internal data structure. \n"
" Only increase this if you get an error message saying to do so. If you're running\n"
" out of memory, you may want to reduce it. Default: %d)\n"
" -F b additional option to -F to require both mates to satisfy filter (default is just one)\n"
" If you specify -F b together with one of the other -F options, -F b MUST be second\n"
" -ku Keep unpaired-looking reads in SAM/BAM input. Ordinarily, if a read doesn't specify\n"
" mate information (RNEXT field is * and/or PNEXT is 0) then the code that matches reads will immdeiately\n"
" discard it. Specifying this flag may cause large memory usage for some input files,\n"
" but may be necessary for some strangely formatted input files. You'll also need to specify this\n"
" flag for SAM/BAM files that were aligned by a single-end aligner.\n"
" -N max seeds when falling back to the single-end mode when doing paired-end. Default: %d\n"
" -en min edit distance for a read aligned as non-ALT by the paired-end aligner to be reconsidered\n"
" for a better alignment by the single-end aligner. Default: %d\n"
" -es min total edit distance by which a read pair aligned as ALT needs to be better than non-ALT alignments\n"
" to skip single-end realignment. Default: %d\n"
" -eg min affine gap score improvement needed for single-end alignments to be considered over\n"
" paired-end alignments. Default: %d\n"
,
DEFAULT_MIN_SPACING,
DEFAULT_MAX_SPACING,
DEFAULT_INTERSECTING_ALIGNER_MAX_HITS,
DEFAULT_MAX_CANDIDATE_POOL_SIZE,
DEFAULT_MAX_HITS_FOR_UNDERLYING_SINGLE_END_ALIGNER,
minScoreRealignment,
minScoreGapRealignmentALT,
minAGScoreImprovement);
}
bool PairedAlignerOptions::parse(const char** argv, int argc, int& n, bool *done)
{
*done = false;
if (strcmp(argv[n], "-s") == 0) {
if (n + 2 < argc) {
minSpacing = atoi(argv[n+1]);
maxSpacing = atoi(argv[n+2]);
inferSpacing = false;
n += 2;
return true;
}
return false;
} else if (strcmp(argv[n], "-H") == 0) {
if (n + 1 < argc) {
intersectingAlignerMaxHits = atoi(argv[n+1]);
n += 1;
return true;
}
return false;
} else if (strcmp(argv[n], "-fs") == 0) {
forceSpacing = true;
return true;
} else if (strcmp(argv[n], "-ku") == 0) {
quicklyDropUnpairedReads = false;
return true;
} else if (strcmp(argv[n], "-mcp") == 0) {
if (n + 1 < argc) {
maxCandidatePoolSize = atoi(argv[n+1]);
n += 1;
return true;
}
return false;
} else if (strcmp(argv[n], "-F") == 0 && n + 1 < argc && strcmp(argv[n + 1],"b") == 0) {
filterFlags |= FilterBothMatesMatch;
n += 1;
return true;
} else if (strcmp(argv[n], "-ins") == 0) {
inferSpacing = true;
return true;
} else if (strcmp(argv[n], "-ins-") == 0) {
inferSpacing = false;
return true;
} else if (strcmp(argv[n], "-N") == 0) {
if (n + 1 < argc) {
maxSeedsSingleEnd = atoi(argv[n+1]);
n += 1;
return true;
}
} else if (strcmp(argv[n], "-en") == 0) {
if (n + 1 < argc) {
minScoreRealignment = atoi(argv[n+1]);
n += 1;
return true;
}
} else if (strcmp(argv[n], "-es") == 0) {
if (n + 1 < argc) {
minScoreGapRealignmentALT = atoi(argv[n+1]);
n += 1;
return true;
}
} else if (strcmp(argv[n], "-eg") == 0) {
if (n + 1 < argc) {
minAGScoreImprovement = atoi(argv[n+1]);
n += 1;
return true;
}
}
return AlignerOptions::parse(argv, argc, n, done);
} // PairedAlignerOptions::parse
PairedAlignerContext::PairedAlignerContext(AlignerExtension* i_extension)
: AlignerContext( 0, NULL, NULL, i_extension)
{
}
bool PairedAlignerContext::initialize()
{
AlignerContext::initialize();
PairedAlignerOptions* options2 = (PairedAlignerOptions*) options;
minSpacing = options2->minSpacing;
maxSpacing = options2->maxSpacing;
forceSpacing = options2->forceSpacing;
maxCandidatePoolSize = options2->maxCandidatePoolSize;
intersectingAlignerMaxHits = options2->intersectingAlignerMaxHits;
ignoreMismatchedIDs = options2->ignoreMismatchedIDs;
quicklyDropUnpairedReads = options2->quicklyDropUnpairedReads;
noUkkonen = options->noUkkonen;
noOrderedEvaluation = options->noOrderedEvaluation;
inferSpacing = options2->inferSpacing;
maxSeedsSingleEnd = options2->maxSeedsSingleEnd;
minScoreRealignment = options2->minScoreRealignment;
minScoreGapRealignmentALT = options2->minScoreGapRealignmentALT;
minAGScoreImprovement = options2->minAGScoreImprovement;
return true;
}
AlignerStats* PairedAlignerContext::newStats()
{
return new PairedAlignerStats();
}
void PairedAlignerContext::runTask()
{
ParallelTask<PairedAlignerContext> task(this);
task.run();
}
int
PairedAlignerContext::compareBySpacing(const void *first_, const void *second_)
{
const GenomeDistance firstDist = *(GenomeDistance *)first_;
const GenomeDistance secondDist = *(GenomeDistance *)second_;
if (firstDist < secondDist) {
return -1;
} else if (firstDist > secondDist) {
return 1;
} else {
return 0;
}
}
//
// Compute paired-end insert size distribution based on BWA-MEM
//
void PairedAlignerContext::computeSpacingDist(GenomeDistance* pairedEndSpacing, int* minSpacing, int* maxSpacing, double* avg, double* stddev) {
GenomeDistance s25, s75; // Lower quartile and Upper Quartile
s25 = pairedEndSpacing[int(.25 * DEFAULT_BATCH_SIZE_IS_ESTIMATION)]; // .499 for rounding up
s75 = pairedEndSpacing[int(.75 * DEFAULT_BATCH_SIZE_IS_ESTIMATION)];
*minSpacing = (int)__max(s25 - OUTLIER_BOUND * (s75 - s25), 1);
*maxSpacing = (int)(s75 + OUTLIER_BOUND * (s75 - s25));
double sum = 0;
int count = 0;
for (int i = 0; i < DEFAULT_BATCH_SIZE_IS_ESTIMATION; i++) {
if (pairedEndSpacing[i] >= *minSpacing && pairedEndSpacing[i] <= *maxSpacing) {
sum += pairedEndSpacing[i];
count++;
}
}
*avg = sum / count;
sum = 0;
for (int i = 0; i < DEFAULT_BATCH_SIZE_IS_ESTIMATION; i++) {
if (pairedEndSpacing[i] >= *minSpacing && pairedEndSpacing[i] <= *maxSpacing) {
sum += ((pairedEndSpacing[i] - *avg) * (pairedEndSpacing[i] - *avg));
}
}
*stddev = sqrt(sum / count);
*minSpacing = (int)(s25 - MAPPING_BOUND * (s75 - s25));
*maxSpacing = (int)(s75 + MAPPING_BOUND * (s75 - s25));
*minSpacing = (int)__min(*avg - MAX_STDDEV * (*stddev), *minSpacing);
*maxSpacing = (int)__max(*avg + MAX_STDDEV * (*stddev), *maxSpacing);
*minSpacing = __max(*minSpacing, 1);
}
void PairedAlignerContext::runIterationThread()
{
PreventMachineHibernationWhileThisThreadIsAlive();
PairedReadSupplier *supplier = pairedReadSupplierGenerator->generateNewPairedReadSupplier();
if (NULL == supplier) {
//
// No work for this thread to do.
//
return;
}
if (extension->runIterationThread(supplier, this)) {
delete supplier;
return;
}
Read *reads[NUM_READS_PER_PAIR];
_int64 nSingleResults[2] = { 0, 0 };
if (index == NULL) {
// no alignment, just input/output
PairedAlignmentResult result;
memset(&result, 0, sizeof(result));
result.location[0] = result.location[1] = InvalidGenomeLocation;
while (supplier->getNextReadPair(&reads[0],&reads[1])) {
// Check that the two IDs form a pair; they will usually be foo/1 and foo/2 for some foo.
if (!ignoreMismatchedIDs && !readIdsMatch(reads[0], reads[1])) {
unsigned n[2] = {min(reads[0]->getIdLength(), 200u), min(reads[1]->getIdLength(), 200u)};
char* p[2] = {(char*) alloca((size_t)n[0] + 1), (char*) alloca((size_t)n[1] + 1)};
memcpy(p[0], reads[0]->getId(), n[0]); p[0][n[0]] = 0;
memcpy(p[1], reads[1]->getId(), n[1]); p[1][n[1]] = 0;
WriteErrorMessage( "Unmatched read IDs '%s' and '%s'. Use the -I option to ignore this.\n", p[0], p[1]);
soft_exit(1);
}
stats->totalReads += 2;
bool pass0 = options->passFilter(reads[0], result.status[0], reads[0]->getDataLength() >= minReadLength && (int)reads[0]->countOfNs() <= maxDist, false);
bool pass1 = options->passFilter(reads[1], result.status[1], reads[1]->getDataLength() >= minReadLength && (int)reads[1]->countOfNs() <= maxDist, false);
bool pass = (options->filterFlags & AlignerOptions::FilterBothMatesMatch)
? (pass0 && pass1) : (pass0 || pass1);
if (pass) {
stats->notFound++;
if (NULL != readWriter) {
readWriter->writePairs(readerContext, reads, &result, 1, NULL, nSingleResults, true, useAffineGap);
}
} else {
stats->uselessReads++;
}
}
delete supplier;
return;
}
int maxReadSize = MAX_READ_LENGTH;
size_t memoryPoolSize = IntersectingPairedEndAligner::getBigAllocatorReservation(index, intersectingAlignerMaxHits, maxReadSize, index->getSeedLength(),
numSeedsFromCommandLine, seedCoverage, maxDist, extraSearchDepth, maxCandidatePoolSize,
maxSecondaryAlignmentsPerContig);
memoryPoolSize += ChimericPairedEndAligner::getBigAllocatorReservation(index, maxReadSize, maxHits, index->getSeedLength(), maxSeedsSingleEnd, seedCoverage, maxDist,
extraSearchDepth, maxCandidatePoolSize, maxSecondaryAlignmentsPerContig);
_int64 maxPairedSecondaryHits;
_int64 maxSingleSecondaryHits;
_int64 maxPairedLVHitsForAffineGap;
if (maxSecondaryAlignmentAdditionalEditDistance < 0) {
maxPairedSecondaryHits = 0;
maxSingleSecondaryHits = 0;
} else {
//
// Since we reallocate these if they overflow, just pick a value that doesn't waste too much memory.
//
maxPairedSecondaryHits = 32;
maxSingleSecondaryHits = 32;
}
if (useAffineGap) {
maxPairedLVHitsForAffineGap = 4096;
}
else {
maxPairedLVHitsForAffineGap = 0;
}
bool reallocatedSingleSecondaryBuffer = false;
bool reallocatedPairedSecondaryBuffer = false;
bool reallocatedPairedLVHitsForAffineGapBuffer = false;
memoryPoolSize += (1 + maxPairedSecondaryHits + maxPairedLVHitsForAffineGap) * sizeof(PairedAlignmentResult) + maxSingleSecondaryHits * sizeof(SingleAlignmentResult);
BigAllocator *allocator = new BigAllocator(memoryPoolSize, 16); // FIXME: Used larger allocation granularity for __m128i that needs to be aligned at 16 byte boundaries
IntersectingPairedEndAligner *intersectingAligner = new (allocator) IntersectingPairedEndAligner(index, maxReadSize, maxHits, maxDist, numSeedsFromCommandLine,
seedCoverage, minSpacing, maxSpacing, intersectingAlignerMaxHits, extraSearchDepth,
maxCandidatePoolSize, maxSecondaryAlignmentsPerContig, allocator, noUkkonen, noOrderedEvaluation, noTruncation,
useAffineGap, ignoreAlignmentAdjustmentForOm, altAwareness, maxScoreGapToPreferNonALTAlignment,
matchReward, subPenalty, gapOpenPenalty, gapExtendPenalty);
ChimericPairedEndAligner *aligner = new (allocator) ChimericPairedEndAligner(
index,
maxReadSize,
maxHits,
maxDist,
maxSeedsSingleEnd,
seedCoverage,
minWeightToCheck,
forceSpacing,
extraSearchDepth,
noUkkonen,
noOrderedEvaluation,
noTruncation,
useAffineGap,
ignoreAlignmentAdjustmentForOm,
altAwareness,
emitALTAlignments,
intersectingAligner,
minReadLength,
maxSecondaryAlignmentsPerContig,
maxScoreGapToPreferNonALTAlignment,
matchReward,
subPenalty,
gapOpenPenalty,
gapExtendPenalty,
minScoreRealignment,
minScoreGapRealignmentALT,
minAGScoreImprovement,
allocator);
allocator->checkCanaries();
PairedAlignmentResult *results = (PairedAlignmentResult *)allocator->allocate((1 + maxPairedSecondaryHits) * sizeof(*results)); // 1 + is for the primary result
PairedAlignmentResult *lvCandidatesForAffineGap = (PairedAlignmentResult *)allocator->allocate(maxPairedLVHitsForAffineGap * sizeof(*lvCandidatesForAffineGap));
SingleAlignmentResult *singleSecondaryResults = (SingleAlignmentResult *)allocator->allocate(maxSingleSecondaryHits * sizeof(*singleSecondaryResults));
ReadWriter *readWriter = this->readWriter;
#ifdef _MSC_VER
if (options->useTimingBarrier) {
if (0 == InterlockedDecrementAndReturnNewValue(nThreadsAllocatingMemory)) {
AllowEventWaitersToProceed(memoryAllocationCompleteBarrier);
} else {
WaitForEvent(memoryAllocationCompleteBarrier);
}
}
#endif // _MSC_VER
// Align the reads.
_uint64 lastReportTime = timeInMillis();
_uint64 readsWhenLastReported = 0;
_uint64 readIdxInBatch = 0;
_int64 startTime = timeInMillis();
while (supplier->getNextReadPair(&reads[0],&reads[1])) {
_int64 readFinishedTime;
if (options->profile) {
readFinishedTime = timeInMillis();
stats->millisReading += (readFinishedTime - startTime);
}
// Check that the two IDs form a pair; they will usually be foo/1 and foo/2 for some foo.
if (!ignoreMismatchedIDs) {
Read::checkIdMatch(reads[0], reads[1]);
}
stats->totalReads += 2;
if (AlignerOptions::useHadoopErrorMessages && stats->totalReads % 10000 == 0 && timeInMillis() - lastReportTime > 10000) {
fprintf(stderr, "reporter:counter:SNAP,readsAligned,%llu\n", stats->totalReads - readsWhenLastReported);
readsWhenLastReported = stats->totalReads;
lastReportTime = timeInMillis();
}
// Skip the pair if there are too many Ns and/or they're too short
int maxDist = this->maxDist;
bool useful0 = reads[0]->getDataLength() >= minReadLength && (int)reads[0]->countOfNs() <= maxDist;
bool useful1 = reads[1]->getDataLength() >= minReadLength && (int)reads[1]->countOfNs() <= maxDist;
if (!useful0 && !useful1) {
PairedAlignmentResult result;
result.status[0] = NotFound;
result.status[1] = NotFound;
result.location[0] = InvalidGenomeLocation;
result.location[1] = InvalidGenomeLocation;
nSingleResults[0] = nSingleResults[1] = 0;
result.clippingForReadAdjustment[0] = result.clippingForReadAdjustment[1] = 0;
result.usedAffineGapScoring[0] = result.usedAffineGapScoring[1] = false;
result.basesClippedBefore[0] = result.basesClippedBefore[1] = 0;
result.basesClippedAfter[0] = result.basesClippedAfter[1] = 0;
result.agScore[0] = result.agScore[1] = 0;
result.supplementary[0] = result.supplementary[1] = false;
bool pass0 = options->passFilter(reads[0], result.status[0], true, false);
bool pass1 = options->passFilter(reads[1], result.status[1], true, false);
bool pass = (options->filterFlags & AlignerOptions::FilterBothMatesMatch)
? (pass0 && pass1) : (pass0 || pass1);
if (pass) {
if (NULL != readWriter) {
readWriter->writePairs(readerContext, reads, &result, 1, NULL, nSingleResults, true, useAffineGap);
}
stats->uselessReads += 2;
}
else {
stats->filtered += 2;
}
continue;
}
#if TIME_HISTOGRAM
_int64 startTime = timeInNanos();
#endif // TIME_HISTOGRAM
_int64 nSecondaryResults;
_int64 nLVCandidatesForAffineGap;
_int64 nSingleSecondaryResults[2];
PairedAlignmentResult firstALTResult;
while (!aligner->align(reads[0], reads[1], results, &firstALTResult, maxSecondaryAlignmentAdditionalEditDistance, maxPairedSecondaryHits, &nSecondaryResults, results + 1,
maxSingleSecondaryHits, maxSecondaryAlignments, &nSingleSecondaryResults[0], &nSingleSecondaryResults[1], singleSecondaryResults, maxPairedLVHitsForAffineGap, &nLVCandidatesForAffineGap, lvCandidatesForAffineGap)) {
_ASSERT(nSecondaryResults > maxPairedSecondaryHits || nSingleSecondaryResults[0] > maxSingleSecondaryHits || nLVCandidatesForAffineGap > maxPairedLVHitsForAffineGap);
if (nSecondaryResults > maxPairedSecondaryHits) {
if (reallocatedPairedSecondaryBuffer) {
BigDealloc(results);
results = NULL;
}
maxPairedSecondaryHits *= 2;
results = (PairedAlignmentResult *)BigAlloc((maxPairedSecondaryHits + 1) * sizeof(PairedAlignmentResult));
reallocatedPairedSecondaryBuffer = true;
}
if (nSingleSecondaryResults[0] > maxSingleSecondaryHits) {
if (reallocatedSingleSecondaryBuffer) {
BigDealloc(singleSecondaryResults);
singleSecondaryResults = NULL;
}
maxSingleSecondaryHits *= 2;
singleSecondaryResults = (SingleAlignmentResult *)BigAlloc(maxSingleSecondaryHits * sizeof(SingleAlignmentResult));
reallocatedSingleSecondaryBuffer = true;
}
if (nLVCandidatesForAffineGap > maxPairedLVHitsForAffineGap) {
if (reallocatedPairedLVHitsForAffineGapBuffer) {
BigDealloc(lvCandidatesForAffineGap);
lvCandidatesForAffineGap = NULL;
}
maxPairedLVHitsForAffineGap *= 2;
lvCandidatesForAffineGap = (PairedAlignmentResult *)BigAlloc((maxPairedLVHitsForAffineGap) * sizeof(PairedAlignmentResult));
reallocatedPairedLVHitsForAffineGapBuffer = true;
}
}
_int64 alignFinishedTime;
if (options->profile) {
alignFinishedTime = timeInMillis();
stats->millisAligning += (alignFinishedTime - readFinishedTime);
}
#if TIME_HISTOGRAM
_int64 runTime = timeInNanos() - startTime;
if (runTime < 0) { // For reasons that I really don't understand, this seems to run backwards sometimes. Just ignore the sample when it does.
stats->backwardsTimeStamps++;
stats->totalBackwardsTimeStamps += runTime;
} else {
int timeBucket = min(30, cheezyLogBase2(runTime));
stats->countByTimeBucket[timeBucket] += 2;
stats->nanosByTimeBucket[timeBucket] += runTime;
for (int whichRead = 0; whichRead < NUM_READS_PER_PAIR; whichRead++) {
if (results[0].status[whichRead] == NotFound) {
stats->countOfUnaligned++;
stats->timeOfUnaligned += runTime / 2;
}
else {
stats->countByMAPQ[results[0].mapq[whichRead]]++;
stats->timeByMAPQ[results[0].mapq[whichRead]] += runTime / 2;
int score = __min(results[0].score[whichRead], 30);
stats->countByNM[score]++;
stats->timeByNM[score] += runTime / 2;
}
}
}
#endif // TIME_HISTOGRAM
if (forceSpacing && isOneLocation(results[0].status[0]) != isOneLocation(results[0].status[1])) {
// either both align or neither do
results[0].status[0] = results[0].status[1] = NotFound;
results[0].location[0] = results[0].location[1] = InvalidGenomeLocation;
results[0].usedAffineGapScoring[0] = results[0].usedAffineGapScoring[1] = false;
results[0].basesClippedBefore[0] = results[0].basesClippedBefore[1] = 0;
results[0].basesClippedAfter[0] = results[0].basesClippedAfter[1] = 0;
results[0].agScore[0] = results[0].agScore[1] = 0;
}
bool firstIsPrimary = true;
for (int i = 0; i <= nSecondaryResults; i++) { // Loop runs to <= nSecondaryResults because there's a primary result, too.
bool pass0 = options->passFilter(reads[0], results[i].status[0], !useful0, i != 0 || !firstIsPrimary);
bool pass1 = options->passFilter(reads[1], results[i].status[1], !useful1, i != 0 || !firstIsPrimary);
bool pass = (options->filterFlags & AlignerOptions::FilterBothMatesMatch)
? (pass0 && pass1) : (pass0 || pass1);
if (!pass) {
//
// Remove this one from the list by copying the last one here.
//
results[i] = results[nSecondaryResults];
nSecondaryResults--;
if (0 == i) {
firstIsPrimary = false;
}
i--;
}
}
//
// Now check the single secondary alignments
//
SingleAlignmentResult *singleResults[2] = { singleSecondaryResults, singleSecondaryResults + nSingleSecondaryResults[0] };
for (int whichRead = 0; whichRead < NUM_READS_PER_PAIR; whichRead++) {
for (int whichAlignment = 0; whichAlignment < nSingleSecondaryResults[whichRead]; whichAlignment++) {
if (!options->passFilter(reads[whichRead], singleResults[whichRead][whichAlignment].status, false, true)) {
singleResults[whichRead][whichAlignment] = singleResults[whichRead][nSingleSecondaryResults[whichRead] - 1];
nSingleSecondaryResults[whichRead]--;
whichAlignment--;
}
}
}
if (NULL != readWriter) {
readWriter->writePairs(readerContext, reads, results, nSecondaryResults + 1, singleResults, nSingleSecondaryResults, firstIsPrimary, useAffineGap);
if (emitALTAlignments && (firstALTResult.status[0] != NotFound || firstALTResult.status[1] != NotFound)) {
readWriter->writePairs(readerContext, reads, &firstALTResult, 1, NULL, 0, true, useAffineGap);
}
}
if (options->profile) {
startTime = timeInMillis();
stats->millisWriting += (startTime - alignFinishedTime);
}
stats->extraAlignments += nSecondaryResults + (firstIsPrimary ? 0 : 1); // If first isn't primary, it's secondary.
if (inferSpacing) {
pairedEndSpacing[readIdxInBatch] = 0;
}
if (firstIsPrimary) {
updateStats((PairedAlignerStats*)stats, reads[0], reads[1], &results[0], useful0, useful1);
if (inferSpacing) {
if ((results[0].direction[0] == FORWARD && results[0].direction[1] == RC) ||
(results[0].direction[0] == RC && results[0].direction[1] == FORWARD)) {
pairedEndSpacing[readIdxInBatch] = DistanceBetweenGenomeLocations(results[0].location[0], results[0].location[1]);
readIdxInBatch++;
}
}
} else {
stats->filtered += 2;
}
if (inferSpacing) {
// Compute new minSpacing and maxSpacing for batch
if (readIdxInBatch == DEFAULT_BATCH_SIZE_IS_ESTIMATION) {
// Sort all alignments based on spacing
qsort(pairedEndSpacing, DEFAULT_BATCH_SIZE_IS_ESTIMATION, sizeof(GenomeDistance), compareBySpacing);
int newMinSpacing = minSpacing, newMaxSpacing = maxSpacing;
double avg, stddev;
computeSpacingDist(pairedEndSpacing, &newMinSpacing, &newMaxSpacing, &avg, &stddev);
// fprintf(stderr, "SNAP paired-end read spacing (min, max, avg, stddev) = (%d, %d, %.3f, %.3f)\n", newMinSpacing, newMaxSpacing, avg, stddev);
// Update min and max spacing for paired-end aligner
intersectingAligner->setMinSpacing(newMinSpacing);
intersectingAligner->setMaxSpacing(newMaxSpacing);
readIdxInBatch = 0;
}
}
} // while we have a read pair
stats->lvCalls = aligner->getLocationsScored();
allocator->checkCanaries();
if (reallocatedPairedSecondaryBuffer) {
BigDealloc(results);
results = NULL;
}
if (reallocatedSingleSecondaryBuffer) {
BigDealloc(singleSecondaryResults);
singleSecondaryResults = NULL;
}
if (reallocatedPairedLVHitsForAffineGapBuffer) {
BigDealloc(lvCandidatesForAffineGap);
lvCandidatesForAffineGap = NULL;
}
aligner->~ChimericPairedEndAligner();
delete supplier;
intersectingAligner->~IntersectingPairedEndAligner();
delete allocator;
}
void PairedAlignerContext::updateStats(PairedAlignerStats* stats, Read* read0, Read* read1, PairedAlignmentResult* result, bool useful0, bool useful1)
{
bool useful[2] = { useful0, useful1 };
// Update stats
for (int r = 0; r < 2; r++) {
if (useful[r]) {
if (isOneLocation(result->status[r])) {
stats->singleHits++;
} else if (result->status[r] == MultipleHits) {
stats->multiHits++;
} else {
_ASSERT(result->status[r] == NotFound);
stats->notFound++;
}
// Add in MAPQ stats
if (result->status[r] != NotFound) {
int mapq = result->mapq[r];
_ASSERT(mapq >= 0 && mapq <= AlignerStats::maxMapq);
stats->mapqHistogram[mapq]++;
}
} else {
stats->uselessReads++;
}
}
if (result->direction[0] == result->direction[1]) {
stats->sameComplement++;
}
if (isOneLocation(result->status[0]) && isOneLocation(result->status[1])) {
stats->incrementDistance(abs((int) (result->location[0] - result->location[1])));
stats->incrementScore(result->score[0], result->score[1]);
}
if (result->alignedAsPair) {
stats->recordAlignTogetherMapqAndTime(__max(result->mapq[0], result->mapq[1]), result->nanosInAlignTogether, result->nSmallHits, result->nLVCalls);
stats->alignedAsPairs += 2; // They are a pair, after all. Hence, +2.
}
if (result->agForcedSingleAlignerCall) {
stats->agForcedSingleEndAlignment += 2;
if (!result->alignedAsPair) {
stats->agUsedSingleEndAlignment += 2;
}
}
}
void
PairedAlignerContext::typeSpecificBeginIteration()
{
if (1 == options->nInputs) {
//
// We've only got one input, so just connect it directly to the consumer.
//
pairedReadSupplierGenerator = options->inputs[0].createPairedReadSupplierGenerator(options->numThreads, quicklyDropUnpairedReads, readerContext);
} else {
//
// We've got multiple inputs, so use a MultiInputReadSupplier to combine the individual inputs.
//
PairedReadSupplierGenerator **generators = new PairedReadSupplierGenerator *[options->nInputs];
// use separate context for each supplier, initialized from common
for (int i = 0; i < options->nInputs; i++) {
ReaderContext context(readerContext);
generators[i] = options->inputs[i].createPairedReadSupplierGenerator(options->numThreads, quicklyDropUnpairedReads, context);
}
pairedReadSupplierGenerator = new MultiInputPairedReadSupplierGenerator(options->nInputs,generators);
}
ReaderContext* context = pairedReadSupplierGenerator->getContext();
readerContext.header = context->header;
readerContext.headerBytes = context->headerBytes;
readerContext.headerLength = context->headerLength;
readerContext.headerMatchesIndex = context->headerMatchesIndex;
readerContext.numRGLines = context->numRGLines;
readerContext.rgLines = context->rgLines;
readerContext.rgLineOffsets = context->rgLineOffsets;
}
void
PairedAlignerContext::typeSpecificNextIteration()
{
if (readerContext.header != NULL) {
delete [] readerContext.header;
readerContext.header = NULL;
readerContext.headerLength = readerContext.headerBytes = 0;
readerContext.headerMatchesIndex = false;
}
if (readerContext.rgLines != NULL) {
delete [] readerContext.rgLines;
delete [] readerContext.rgLineOffsets;
readerContext.numRGLines = 0;
readerContext.rgLines = NULL;
readerContext.rgLineOffsets = NULL;
}
delete pairedReadSupplierGenerator;
pairedReadSupplierGenerator = NULL;
}
|