1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
/*++
Module Name:
geonome.cpp
Abstract:
Genome class for the SNAP sequencer
Authors:
Bill Bolosky, August, 2011
Environment:
User mode service.
Revision History:
Adapted from Matei Zaharia's Scala implementation.
--*/
#include "stdafx.h"
#include "Genome.h"
#include "GenericFile.h"
#include "GenericFile_map.h"
#include "Compat.h"
#include "BigAlloc.h"
#include "exit.h"
#include "Error.h"
Genome::Genome(GenomeDistance i_maxBases, GenomeDistance nBasesStored, unsigned i_chromosomePadding, unsigned i_maxContigs)
: maxBases(i_maxBases), minLocation(0), maxLocation(i_maxBases), chromosomePadding(i_chromosomePadding), maxContigs(i_maxContigs),
mappedFile(NULL)
{
bases = ((char *) BigAlloc(nBasesStored + 2 * N_PADDING)) + N_PADDING;
if (NULL == bases) {
WriteErrorMessage("Genome: unable to allocate memory for %llu bases\n", GenomeLocationAsInt64(maxBases));
soft_exit(1);
}
// Add N's for the N_PADDING bases before and after the genome itself
memset(bases - N_PADDING, 'n', N_PADDING);
memset(bases + nBasesStored, 'n', N_PADDING);
nBases = 0;
nContigs = 0;
contigs = new Contig[maxContigs];
contigsByName = NULL;
}
void
Genome::addData(const char *data, GenomeDistance len)
{
if (nBases + len > GenomeLocationAsInt64(maxBases)) {
WriteErrorMessage("Tried to write beyond allocated genome size (or tried to write into a genome that was loaded from a file).\n"
"Size = %lld\n", GenomeLocationAsInt64(maxBases));
soft_exit(1);
}
memcpy(bases + nBases,data,len);
nBases += (unsigned)len;
}
void
Genome::addData(const char *data)
{
addData(data, strlen(data));
}
void
Genome::startContig(const char *contigName)
{
if (nContigs == maxContigs) {
//
// Reallocate (maybe we're sequencing a tree that's got lots of chromosomes).
//
int newMaxContigs = maxContigs * 2;
Contig *newContigs = new Contig[newMaxContigs];
if (NULL == newContigs) {
WriteErrorMessage("Genome: unable to reallocate contig array to size %d\n", newMaxContigs);
soft_exit(1);
}
for (int i = 0; i < nContigs; i++) {
newContigs[i] = contigs[i];
}
delete [] contigs;
contigs = newContigs;
maxContigs = newMaxContigs;
}
contigs[nContigs].beginningLocation = nBases;
size_t len = strlen(contigName) + 1;
contigs[nContigs].name = new char[len];
contigs[nContigs].nameLength = (unsigned)len-1;
strncpy(contigs[nContigs].name,contigName,len);
contigs[nContigs].name[len-1] = '\0';
nContigs++;
}
Genome::~Genome()
{
BigDealloc(bases - N_PADDING);
for (int i = 0; i < nContigs; i++) {
delete [] contigs[i].name;
contigs[i].name = NULL;
}
delete [] contigs;
if (contigsByName) {
delete [] contigsByName;
}
contigs = NULL;
if (NULL != mappedFile) {
mappedFile->close();
delete mappedFile;
}
}
bool
Genome::saveToFile(const char *fileName) const
{
//
// Save file format is (in binary) the number of bases, the number of contigs, followed by
// the contigs themselves, rounded up to 4K, followed by the bases.
//
FILE *saveFile = fopen(fileName,"wb");
if (saveFile == NULL) {
WriteErrorMessage("Genome::saveToFile: unable to open file '%s'\n",fileName);
return false;
}
fprintf(saveFile,"%lld %d\n",nBases, nContigs);
char *curChar = NULL;
for (int i = 0; i < nContigs; i++) {
for (int n = 0; n < strlen(contigs[i].name); n++){
curChar = contigs[i].name + n;
if (*curChar == ' '){ *curChar = '_'; }
}
fprintf(saveFile,"%lld %s\n",contigs[i].beginningLocation, contigs[i].name);
}
//
// Write it out in (big) chunks. For whatever reason, fwrite with really big sizes seems not to
// work as well as one would like.
//
const size_t max_chunk_size = 1 * 1024 * 1024 * 1024; // 1 GB (or GiB for the obsessively precise)
size_t bases_to_write = nBases;
size_t bases_written = 0;
while (bases_to_write > 0) {
size_t bases_this_write = __min(bases_to_write, max_chunk_size);
if (bases_this_write != fwrite(bases + bases_written, 1, bases_this_write, saveFile)) {
WriteErrorMessage("Genome::saveToFile: fwrite failed\n");
fclose(saveFile);
return false;
}
bases_to_write -= bases_this_write;
bases_written += bases_this_write;
}
_ASSERT(bases_written == nBases);
fclose(saveFile);
return true;
}
const Genome *
Genome::loadFromFile(const char *fileName, unsigned chromosomePadding, GenomeLocation minLocation, GenomeDistance length, bool map)
{
GenericFile *loadFile;
GenomeDistance nBases;
unsigned nContigs;
if (!openFileAndGetSizes(fileName, &loadFile, &nBases, &nContigs, map)) {
//
// It already printed an error. Just fail.
//
return NULL;
}
GenomeLocation maxLocation(nBases);
if (0 == length) {
length = maxLocation - minLocation;
} else {
//
// Don't let length go beyond nBases.
//
length = __min(length, maxLocation - minLocation);
maxLocation = minLocation + length;
}
Genome *genome = new Genome(nBases, length, chromosomePadding);
genome->nBases = nBases;
genome->nContigs = genome->maxContigs = nContigs;
genome->contigs = new Contig[nContigs];
genome->minLocation = minLocation;
if (GenomeLocationAsInt64(minLocation) >= nBases) {
WriteErrorMessage("Genome::loadFromFile: specified minOffset %u >= nBases %u\n", GenomeLocationAsInt64(minLocation), nBases);
soft_exit(-1);
}
genome->maxLocation = maxLocation;
static const unsigned contigNameBufferSize = 512;
char contigNameBuffer[contigNameBufferSize];
unsigned n;
size_t contigSize;
char *curName;
for (unsigned i = 0; i < nContigs; i++) {
if (NULL == loadFile->gets(contigNameBuffer, contigNameBufferSize)){
WriteErrorMessage("Unable to read contig description\n");
delete genome;
return NULL;
}
for (n = 0; n < contigNameBufferSize; n++){
if (contigNameBuffer[n] == ' ') {
contigNameBuffer[n] = '\0';
break;
}
}
_int64 contigStart;
if (1 != sscanf(contigNameBuffer, "%lld", &contigStart)) {
WriteErrorMessage("Unable to parse contig start in genome file '%s', '%s%'\n", fileName, contigNameBuffer);
soft_exit(1);
}
genome->contigs[i].beginningLocation = GenomeLocation(contigStart);
contigNameBuffer[n] = ' ';
n++; // increment n so we start copying at the position after the space
contigSize = strlen(contigNameBuffer + n) - 1; //don't include the final \n
genome->contigs[i].name = new char[contigSize + 1];
genome->contigs[i].nameLength = (unsigned)contigSize;
curName = genome->contigs[i].name;
for (unsigned pos = 0; pos < contigSize; pos++) {
curName[pos] = contigNameBuffer[pos + n];
}
curName[contigSize] = '\0';
}
if (0 != loadFile->advance(GenomeLocationAsInt64(minLocation))) {
WriteErrorMessage("Genome::loadFromFile: _fseek64bit failed\n");
soft_exit(1);
}
size_t readSize;
if (map) {
GenericFile_map *mappedFile = (GenericFile_map *)loadFile;
genome->bases = (char *)mappedFile->mapAndAdvance(length, &readSize);
genome->mappedFile = mappedFile;
mappedFile->prefetch();
} else {
readSize = loadFile->read(genome->bases, length);
loadFile->close();
delete loadFile;
loadFile = NULL;
}
if (length != readSize) {
WriteErrorMessage("Genome::loadFromFile: fread of bases failed; wanted %u, got %d\n", length, readSize);
delete loadFile;
delete genome;
return NULL;
}
genome->fillInContigLengths();
genome->sortContigsByName();
return genome;
}
bool
contigComparator(
const Genome::Contig& a,
const Genome::Contig& b)
{
return strcmp(a.name, b.name) < 0;
}
void
Genome::sortContigsByName()
{
if (contigsByName) {
delete [] contigsByName;
}
contigsByName = new Contig[nContigs];
memcpy(contigsByName, contigs, nContigs * sizeof(Contig));
std::sort(contigsByName, contigsByName + nContigs, contigComparator);
}
bool
Genome::openFileAndGetSizes(const char *filename, GenericFile **file, GenomeDistance *nBases, unsigned *nContigs, bool map)
{
if (map) {
*file = GenericFile_map::open(filename);
} else {
*file = GenericFile::open(filename, GenericFile::ReadOnly);
}
if (*file == NULL) {
WriteErrorMessage("Genome::openFileAndGetSizes: unable to open file '%s'\n",filename);
return false;
}
char linebuf[2000];
char *retval = (*file)->gets(linebuf, sizeof(linebuf));
if (NULL == retval || 2 != sscanf(linebuf,"%lld %d\n", nBases, nContigs)) {
(*file)->close();
delete *file;
*file = NULL;
WriteErrorMessage("Genome::openFileAndGetSizes: unable to read header\n");
return false;
}
return true;
}
bool
Genome::getSizeFromFile(const char *fileName, GenomeDistance *nBases, unsigned *nContigs)
{
GenericFile *file;
GenomeDistance localNBases;
unsigned localnContigs;
if (!openFileAndGetSizes(fileName,&file, nBases ? nBases : &localNBases, nContigs ? nContigs : &localnContigs, false)) {
return false;
}
file->close();
delete file;
return true;
}
bool
Genome::getLocationOfContig(const char *contigName, GenomeLocation *location, int * index) const
{
if (contigsByName) {
int low = 0;
int high = nContigs - 1;
while (low <= high) {
int mid = (low + high) / 2;
int c = strcmp(contigsByName[mid].name, contigName);
if (c == 0) {
if (location != NULL) {
*location = contigsByName[mid].beginningLocation;
}
if (index != NULL) {
*index = mid;
}
return true;
} else if (c < 0) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return false;
}
for (int i = 0; i < nContigs; i++) {
if (!strcmp(contigName,contigs[i].name)) {
if (NULL != location) {
*location = contigs[i].beginningLocation;
}
if (index != NULL) {
*index = i;
}
return true;
}
}
return false;
}
const Genome::Contig *
Genome::getContigAtLocation(GenomeLocation location) const
{
_ASSERT(location < nBases);
int low = 0;
int high = nContigs - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (contigs[mid].beginningLocation <= location &&
(mid == nContigs-1 || contigs[mid+1].beginningLocation > location)) {
return &contigs[mid];
} else if (contigs[mid].beginningLocation <= location) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return NULL; // Should not be reached
}
int
Genome::getContigNumAtLocation(GenomeLocation location) const
{
const Contig *contig = getContigAtLocation(location);
return (int)(contig - contigs);
}
const Genome::Contig *
Genome::getNextContigAfterLocation(GenomeLocation location) const
{
_ASSERT(location < nBases);
if (nContigs > 0 && location < contigs[0].beginningLocation) {
return &contigs[0];
}
int low = 0;
int high = nContigs - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (contigs[mid].beginningLocation <= location &&
(mid == nContigs-1 || contigs[mid+1].beginningLocation > location)) {
if (mid >= nContigs - 1) {
//
// This location landed in the last contig, so return NULL for the next one.
//
return NULL;
} else {
return &contigs[mid+1];
}
} else if (contigs[mid].beginningLocation <= location) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return NULL; // Should not be reached
}
GenomeDistance DistanceBetweenGenomeLocations(GenomeLocation locationA, GenomeLocation locationB)
{
if (locationA > locationB) return locationA - locationB;
return locationB - locationA;
}
void Genome::fillInContigLengths()
{
if (nContigs == 0) return;
for (int i = 0; i < nContigs - 1; i++) {
contigs[i].length = contigs[i+1].beginningLocation - contigs[i].beginningLocation;
}
contigs[nContigs-1].length = nBases - GenomeLocationAsInt64(contigs[nContigs-1].beginningLocation);
}
const Genome::Contig *Genome::getContigForRead(GenomeLocation location, unsigned readLength, GenomeDistance *extraBasesClippedBefore) const
{
const Contig *contig = getContigAtLocation(location);
//
// Sometimes, a read aligns before the beginning of a chromosome (imagine prepending a few bases to the read).
// In that case, we want to handle it by soft-clipping the bases off of the beginning of the read. We detect it
// here by looking to see if the aligned location plus the read length crosses a contig boundary. It also might
// happen that it is aligned before the first contig, in which case contig will be NULL.
//
if (NULL == contig || location + readLength > contig->beginningLocation + contig->length) {
//
// We should never align over the end of a chromosome, only before the beginning. So move this into the next
// chromosome.
//
contig = getNextContigAfterLocation(location);
_ASSERT(NULL != contig);
_ASSERT(contig->beginningLocation > location && contig->beginningLocation < location + readLength);
*extraBasesClippedBefore = contig->beginningLocation - location;
} else {
*extraBasesClippedBefore = 0;
}
return contig;
}
GenomeLocation InvalidGenomeLocation; // Gets set on genome build/load
|