1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*++
Module Name:
SingleAligner.cpp
Abstract:
Functions for running the single end aligner sub-program.
Authors:
Matei Zaharia, February, 2012
Environment:
`
User mode service.
Revision History:
Adapted from cSNAP, which was in turn adapted from the scala prototype
--*/
#include "stdafx.h"
#include "options.h"
#include "BaseAligner.h"
#include "Compat.h"
#include "RangeSplitter.h"
#include "GenomeIndex.h"
#include "SAM.h"
#include "Tables.h"
#include "AlignerContext.h"
#include "AlignerOptions.h"
#include "FASTQ.h"
#include "Util.h"
#include "SingleAligner.h"
#include "MultiInputReadSupplier.h"
using namespace std;
using util::stringEndsWith;
SingleAlignerContext::SingleAlignerContext(AlignerExtension* i_extension)
: AlignerContext(0, NULL, NULL, i_extension)
{
}
AlignerStats*
SingleAlignerContext::newStats()
{
return new AlignerStats();
}
void
SingleAlignerContext::runTask()
{
ParallelTask<SingleAlignerContext> task(this);
task.run();
}
void
SingleAlignerContext::runIterationThread()
{
PreventMachineHibernationWhileThisThreadIsAlive();
ReadSupplier *supplier = readSupplierGenerator->generateNewReadSupplier();
if (NULL == supplier) {
//
// No work for this thread to do.
//
return;
}
if (extension->runIterationThread(supplier, this)) {
delete supplier;
return;
}
if (index == NULL) {
// no alignment, just input/output
Read *read;
while (NULL != (read = supplier->getNextRead())) {
stats->totalReads++;
SingleAlignmentResult result;
result.status = NotFound;
result.direction = FORWARD;
result.mapq = 0;
result.score = 0;
result.location = InvalidGenomeLocation;
if (NULL != readWriter && options->passFilter(read, NotFound, false)) {
readWriter->writeReads(readerContext, read, &result, 1, true);
}
}
delete supplier;
return;
}
int maxReadSize = MAX_READ_LENGTH;
SingleAlignmentResult *alignmentResults = NULL;
unsigned alignmentResultBufferCount;
if (maxSecondaryAlignmentAdditionalEditDistance < 0) {
alignmentResultBufferCount = 1; // For the primary alignment
} else {
alignmentResultBufferCount = BaseAligner::getMaxSecondaryResults(numSeedsFromCommandLine, seedCoverage, maxReadSize, maxHits, index->getSeedLength()) + 1; // +1 for the primary alignment
}
size_t alignmentResultBufferSize = sizeof(*alignmentResults) * (alignmentResultBufferCount + 1); // +1 is for primary result
BigAllocator *allocator = new BigAllocator(BaseAligner::getBigAllocatorReservation(index, true, maxHits, maxReadSize, index->getSeedLength(), numSeedsFromCommandLine, seedCoverage, maxSecondaryAlignmentsPerContig)
+ alignmentResultBufferSize);
BaseAligner *aligner = new (allocator) BaseAligner(
index,
maxHits,
maxDist,
maxReadSize,
numSeedsFromCommandLine,
seedCoverage,
minWeightToCheck,
extraSearchDepth,
noUkkonen,
noOrderedEvaluation,
noTruncation,
maxSecondaryAlignmentsPerContig,
NULL, // LV (no need to cache in the single aligner)
NULL, // reverse LV
stats,
allocator);
alignmentResults = (SingleAlignmentResult *)allocator->allocate(alignmentResultBufferSize);
allocator->checkCanaries();
aligner->setExplorePopularSeeds(options->explorePopularSeeds);
aligner->setStopOnFirstHit(options->stopOnFirstHit);
#ifdef _MSC_VER
if (options->useTimingBarrier) {
if (0 == InterlockedDecrementAndReturnNewValue(nThreadsAllocatingMemory)) {
AllowEventWaitersToProceed(memoryAllocationCompleteBarrier);
} else {
WaitForEvent(memoryAllocationCompleteBarrier);
}
}
#endif // _MSC_VER
// Align the reads.
Read *read;
_uint64 lastReportTime = timeInMillis();
_uint64 readsWhenLastReported = 0;
while (NULL != (read = supplier->getNextRead())) {
stats->totalReads++;
if (AlignerOptions::useHadoopErrorMessages && stats->totalReads % 10000 == 0 && timeInMillis() - lastReportTime > 10000) {
fprintf(stderr,"reporter:counter:SNAP,readsAligned,%lu\n",stats->totalReads - readsWhenLastReported);
readsWhenLastReported = stats->totalReads;
lastReportTime = timeInMillis();
}
// Skip the read if it has too many Ns or trailing 2 quality scores.
if (read->getDataLength() < minReadLength || read->countOfNs() > maxDist) {
if (readWriter != NULL && options->passFilter(read, NotFound, true)) {
SingleAlignmentResult result;
result.status = NotFound;
result.location = InvalidGenomeLocation;
result.mapq = 0;
result.direction = FORWARD;
readWriter->writeReads(readerContext, read, &result, 1, true);
}
continue;
} else {
stats->usefulReads++;
}
#if TIME_HISTOGRAM
_int64 startTime = timeInNanos();
#endif // TIME_HISTOGRAM
int nSecondaryResults = 0;
#ifdef LONG_READS
int oldMaxK = aligner->getMaxK();
if (options->maxDistFraction > 0.0) {
aligner->setMaxK(min(MAX_K, (int)(read->getDataLength() * options->maxDistFraction)));
}
#endif
aligner->AlignRead(read, alignmentResults, maxSecondaryAlignmentAdditionalEditDistance, alignmentResultBufferCount - 1, &nSecondaryResults, maxSecondaryAlignments, alignmentResults + 1);
#ifdef LONG_READS
aligner->setMaxK(oldMaxK);
#endif
#if TIME_HISTOGRAM
_int64 runTime = timeInNanos() - startTime;
int timeBucket = min(30, cheezyLogBase2(runTime));
stats->countByTimeBucket[timeBucket]++;
stats->nanosByTimeBucket[timeBucket] += runTime;
#endif // TIME_HISTOGRAM
allocator->checkCanaries();
updateStats(stats, read, alignmentResults[0].status, alignmentResults[0].score, alignmentResults[0].mapq);
if (NULL != readWriter) {
//
// Remove any reads that don't pass the filter, then send the remainder down to the writer.
//
bool containsPrimary = true;
for (int i = 0; i <= nSecondaryResults; i++) {
if (!options->passFilter(read, alignmentResults[i].status, false)) {
if (i == 0) {
containsPrimary = false;
}
//
// Copy the last result here.
//
alignmentResults[i] = alignmentResults[nSecondaryResults];
nSecondaryResults--;
//
// And back up so it gets checked.
//
i--;
}
} // For each result
readWriter->writeReads(readerContext, read, alignmentResults, nSecondaryResults + 1, containsPrimary);
}
}
aligner->~BaseAligner(); // This calls the destructor without calling operator delete, allocator owns the memory.
if (supplier != NULL) {
delete supplier;
}
delete allocator; // This is what actually frees the memory.
}
void
SingleAlignerContext::updateStats(
AlignerStats* stats,
Read* read,
AlignmentResult result,
int score,
int mapq)
{
if (isOneLocation(result)) {
stats->singleHits++;
} else if (result == MultipleHits) {
stats->multiHits++;
} else {
_ASSERT(result == NotFound);
stats->notFound++;
}
if (result != NotFound) {
_ASSERT(mapq >= 0 && mapq <= AlignerStats::maxMapq);
stats->mapqHistogram[mapq]++;
}
}
void
SingleAlignerContext::typeSpecificBeginIteration()
{
if (1 == options->nInputs) {
//
// We've only got one input, so just connect it directly to the consumer.
//
readSupplierGenerator = options->inputs[0].createReadSupplierGenerator(options->numThreads, readerContext);
} else {
//
// We've got multiple inputs, so use a MultiInputReadSupplier to combine the individual inputs.
//
ReadSupplierGenerator **generators = new ReadSupplierGenerator *[options->nInputs];
// use separate context for each supplier, initialized from common
for (int i = 0; i < options->nInputs; i++) {
ReaderContext context(readerContext);
generators[i] = options->inputs[i].createReadSupplierGenerator(options->numThreads, context);
}
readSupplierGenerator = new MultiInputReadSupplierGenerator(options->nInputs,generators);
}
ReaderContext* context = readSupplierGenerator->getContext();
readerContext.header = context->header;
readerContext.headerBytes = context->headerBytes;
readerContext.headerLength = context->headerLength;
readerContext.headerMatchesIndex = context->headerMatchesIndex;
}
void
SingleAlignerContext::typeSpecificNextIteration()
{
if (readerContext.header != NULL) {
delete [] readerContext.header;
readerContext.header = NULL;
readerContext.headerLength = readerContext.headerBytes = 0;
readerContext.headerMatchesIndex = false;
}
delete readSupplierGenerator;
readSupplierGenerator = NULL;
}
|