1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
#!/usr/bin/perl
#-------------------------------------------------------------------------------
#
# Plot a QQ plot (using R)
# Data is feed as a 1 column of numbers
#
# Note: Any line that does not match a numeric regular expression, is filtered out).
#
# Pablo Cingolani
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# Main
#-------------------------------------------------------------------------------
# Parse command line option (file base name)
if( $ARGV[0] eq '' ) { die "Usage: cat data.txt | qqplot_subsample.pl title pvalueTh sub_sample_rate\n"; }
$base = $ARGV[0];
$pvalueTh = $ARGV[1];
$pvalueSubsample = $ARGV[2];
$pngFile = "$base.png";
$txtFile = "$base.txt";
# Read STDIN and create an R vector
open TXT, "> $txtFile" or die "Cannot open output file '$txtFile'\n";
print TXT "x\n";
for( $ln = 0 ; $l = <STDIN> ; ) {
chomp $l;
# Does the string contain exactly one number? (can be float)
if( $l =~ /^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$/ ) { print TXT "$l\n"; }
}
close TXT;
#---
# Create an R program, save QQ-plot as PNG image
#---
open R, "| R --vanilla --slave " or die "Cannot open R program\n";
print R <<EOF;
#-------------------------------------------------------------------------------
# Create a QQ-plot form values in 'x'
#
# If a sample is more than pvalueTh, then we only have one sample every 'pvalueSample'
#-------------------------------------------------------------------------------
qqplot <- function( x, title, pvalueTh=1.0, pvalueSample=1 ) {
keep <- (x > 0) & (x <= 1) & ( ! is.na(x) );
x <- x[keep]
s <- sort(x);
ly <- -log10(s);
# Expected p-values assuming uniform districution is just the rank
# So we have to calculate the rank
n <- length(s);
rank <- 1:n
# Do we need to counter effect subsampling of high p-values?
if(( pvalueTh < 1.0 ) && ( pvalueSample > 1)) {
# We must correct rank for pvalues over threshold
n.overTh <- sum( s > pvalueTh)
n.underTh <- sum( s <= pvalueTh)
# Create a sequence of 'expected pvalues'
rank.undetTh <- 1:n.underTh; # These are not sub-sampled, so we are OK
rank.overTh <- n.underTh + 1 + ( seq(0, n.overTh-1) * pvalueSample ); # These are sub-sampled 1/pvalueSample, so we compensate it
rank <- c( rank.undetTh, rank.overTh )
}
# Now that we have the rank, we can calculate the expected p-value
expected.pvalue <- rank / ( max(rank) + 1 )
lx <- -log10( expected.pvalue )
# Show full range in both plots
range <- c(0 , max(lx, ly) );
lyTh <- ly[n.underTh + 1]
lxTh <- lx[n.underTh + 1]
plot( lx, ly, xlim=range, ylim=range, main=title, xlab="-Log[ rank / (N+1) ]", ylab="-Log[ p ]" );
col <- rgb( 0.8, 0.8, 0.8, 0.5 )
rect(0, 0, lxTh, lyTh, col=col, border=NA)
abline( 0 , 1 , col='red');
s <- sort(x);
ly <- -log10(s);
}
png('$pngFile', width = 1024, height = 1024);
data <- read.csv("$txtFile", sep='\t', header = TRUE);
qqplot( data\$x, "$base", $pvalueTh, $pvalueSubsample );
dev.off();
quit( save='no' )
EOF
close R;
#---
# Show figure
#---
$os = `uname`;
$show = "eog";
if( $os =~ "Darwin" ) { $show = "open"; }
`$show $pngFile &`;
|