1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*
@copyright 2016-2021 Clarity Genomics BVBA
@copyright 2012-2016 Bonsai Bioinformatics Research Group
@copyright 2014-2016 Knight Lab, Department of Pediatrics, UCSD, La Jolla
@parblock
SortMeRNA - next-generation reads filter for metatranscriptomic or total RNA
This is a free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
SortMeRNA is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with SortMeRNA. If not, see <http://www.gnu.org/licenses/>.
@endparblock
@contributors Jenya Kopylova jenya.kopylov@gmail.com
Laurent No laurent.noe@lifl.fr
Pierre Pericard pierre.pericard@lifl.fr
Daniel McDonald wasade@gmail.com
Mikal Salson mikael.salson@lifl.fr
Hlne Touzet helene.touzet@lifl.fr
Rob Knight robknight@ucsd.edu
*/
/**
* FILE: readsqueue.hpp
* Created: Nov 06, 2017 Mon
*/
#pragma once
#include <string>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <sstream>
#include <atomic>
#include "common.hpp"
#include "read.hpp"
#if defined(CONCURRENTQUEUE)
# include <concurrentqueue/moodycamel/concurrentqueue.h>
#elif defined(LOCKQUEUE)
# include <queue>
#endif
/**
* Queue for Reads' records. Concurrently accessed by the Reader (producer) and the Processors (consumers)
*/
class ReadsQueue
{
public:
std::string id;
size_t capacity; // max size of the queue
unsigned reads_tot; // total number of reads expected to be pushed/popped
std::atomic_uint num_pushed;
unsigned count_to_print;
unsigned max_print_count;
std::atomic_uint num_popped;
std::atomic_uint num_poppers;
#if defined(CONCURRENTQUEUE)
moodycamel::ConcurrentQueue<std::string> queue; // lockless queue
#elif defined(LOCKQUEUE)
std::queue<Read> recs; // shared: Reader & Processors, Writer & Processors
std::mutex qlock; // lock for push/pop on queue
std::condition_variable cvQueue;
#endif
public:
ReadsQueue(std::string id = "", std::size_t capacity = 100, std::size_t num_reads_tot = 0, std::size_t poppers = 0)
:
id(id),
capacity(capacity),
reads_tot(num_reads_tot),
num_pushed(0),
count_to_print(0),
max_print_count(reads_tot/20),
num_popped(0),
num_poppers(poppers)
#ifdef CONCURRENTQUEUE
,
queue(capacity) // set initial capacity
#endif
{
INFO("created Reads queue with capacity [", capacity, "] Total reads to process: ", num_reads_tot);
}
//~ReadsQueue()
/**
* Synchronized. Blocks until queue has capacity for more reads
* pushing stops automatically upon EOF which sets is_done_push = true
*/
bool push(const std::string& rec)
{
bool ret = false;
#if defined(CONCURRENTQUEUE)
while (!(ret = queue.try_enqueue(rec))) {
std::this_thread::sleep_for(std::chrono::nanoseconds(5));
}
if (ret) {
num_pushed.fetch_add(1, std::memory_order_relaxed);
++count_to_print;
}
if (count_to_print == max_print_count)
{
INFO_MEM("Thread [", std::this_thread::get_id(), "] Pushed another: ", max_print_count, ". Queue size: ", queue.size_approx());
count_to_print = 0;
}
if (reads_tot == num_pushed.load(std::memory_order_relaxed))
{
INFO("Thread [" , std::this_thread::get_id(), "] done Push reads total: ", reads_tot, ". Queue size: ", queue.size_approx());
}
#elif defined(LOCKQUEUE)
std::unique_lock<std::mutex> lmq(qlock);
cvQueue.wait(lmq, [this] { return recs.size() < capacity; });
recs.push(std::move(rec));
cvQueue.notify_one();
#endif
return ret;
}
// synchronized
// return false when is_done_push == true && num_pushed == num_popped
bool pop(std::string& rec)
{
bool ret = false;
//unsigned num_pop_tries = 0;
#if defined(CONCURRENTQUEUE)
for (; !(ret = queue.try_dequeue(rec)); ) {
std::this_thread::sleep_for(std::chrono::nanoseconds(1));
// acquire
// num_pushed.load(std::memory_order_relaxed) == reads_tot && queue.size_approx() == 0
if (num_popped.load(std::memory_order_relaxed) == reads_tot) {
break;
}
//INFO("Thread [", std::this_thread::get_id(), "] Queue size: ", queue.size_approx());
//else if (num_pop_tries > 1000) {
// INFO("Thread [", std::this_thread::get_id(), "] done after max Pop tries: ", num_pop_tries, ". Queue size: ", queue.size_approx());
// break;
//}
}
if (ret)
num_popped.fetch_add(1, std::memory_order_relaxed); // ++num_out store release
#elif defined(LOCKQUEUE)
std::unique_lock<std::mutex> lmq(qlock);
cvQueue.wait(lmq, [this] { return (pushers.load() == 0 && recs.empty()) || !recs.empty(); }); // if False - keep waiting, else - proceed.
if (!recs.empty())
{
rec = recs.front();
recs.pop();
++numPopped;
if (numPopped.load() % 100000 == 0)
{
std::stringstream ss;
ss << STAMP << id << " Popped read number: " << rec.read_num << "\r";
std::cout << ss.str();
}
}
cvQueue.notify_one();
#endif
return ret;
}
void reset() {
num_pushed = 0;
num_popped = 0;
}
}; // ~class ReadsQueue
|