1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
/*
* Copyright (c) Medical Research Council 2002. All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation for any purpose is hereby granted without fee, provided that
* this copyright and notice appears in all copies.
*
* This file was written as part of the Staden Package at the MRC Laboratory
* of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
*
* MRC disclaims all warranties with regard to this software.
*
*/
#include <cassert>
#include <cstdio> // For std::printf(), std::sprintf()
#include <cstring> // For std::strcpy(), std::memset()
#include <cstdlib> // For std::min()
#include <new> // For std::bad_alloc
#include <algorithm> // For std::max()
#include <list.hpp> // For list template
#include <align.hpp> // For Alignment object
#include <trace.hpp> // For Trace object
#include <mutscan.hpp> // For helpers
#include <mutationtag_utils.hpp> // For CopyTags(), CompTags(), SortTags(), PruneTags()
#include <mutscan_parameters.hpp> // For MutScanParameter object
#include <mutscan_preprocess.hpp> // For MutScanPreprocessor object
#include <mutscan_analysis.hpp> // For MutScanAnalyser object
// #define VERBOSE_DEBUG
/**
Initialises an empty mutscan_t structure.
*/
void MutScanInit( mutscan_t* ms )
{
assert(ms != NULL);
MutScanParameters Parameter;
std::memset( ms, 0, sizeof(mutscan_t) );
for( int n=0; n<MUTSCAN_PARAMETERS; n++ )
ms->Parameter[n] = Parameter[n].Default();
ms->Initialised = 1;
}
/**
Frees up all memory allocated by the trace alignment algorithm
in the mutscan_t structure.
*/
void MutScanDestroy( mutscan_t* ms )
{
assert(ms != NULL);
assert(ms->Initialised);
try
{
// Delete all data
MutScanDestroyResults( ms );
}
catch(...)
{
// Shouldn't happen, but we musn't throw exceptions outside dll boundary
assert(0);
}
}
/**
Gets the value of the mutscan parameter 'p'.
*/
double MutScanGetParameter( mutscan_t* ms, mutscan_parameter_t p )
{
assert(ms != NULL);
assert(ms->Initialised);
assert(p<MUTSCAN_PARAMETERS);
return (p<MUTSCAN_PARAMETERS) ? ms->Parameter[p] : 0.0;
}
/**
Sets the value of the mutscan parameter 'p'.
*/
void MutScanSetParameter( mutscan_t* ms, mutscan_parameter_t p, double v )
{
assert(ms != NULL);
assert(ms->Initialised);
assert(p<MUTSCAN_PARAMETERS);
if( p < MUTSCAN_PARAMETERS )
ms->Parameter[p] = v;
}
/**
Sets the specified reference trace. The clip points are in base units.
The caller retains ownership of the Read structure and sequence data.
*/
void MutScanSetReference( mutscan_t* ms, mutlib_strand_t d, Read* r, int ql, int qr )
{
assert(r != NULL);
assert(ms != NULL);
assert(ms->Initialised);
ms->ReferenceTrace[d].ClipL = ql;
ms->ReferenceTrace[d].ClipR = qr;
ms->ReferenceTrace[d].Trace = r;
ms->ReferenceTrace[d].Strand = d;
ms->ReferenceTrace[d].New = 1;
}
/**
Sets the input traces. The clip points are in base units. The caller retains
ownership of the Read structure data.
*/
void MutScanSetInput( mutscan_t* ms, mutlib_strand_t d, Read* r, int ql, int qr )
{
assert(r != NULL);
assert(ms != NULL);
assert(ms->Initialised);
MutScanDestroyResults( ms );
ms->InputTrace.ClipL = ql;
ms->InputTrace.ClipR = qr;
ms->InputTrace.Trace = r;
ms->InputTrace.Strand = d;
ms->InputTrace.New = 1;
}
/**
Returns the result code generated by the Execute() function. This can be
used to query the result later without having to save the value returned
by Execute().
*/
mutlib_result_t MutScanGetResultCode( mutscan_t* ms )
{
assert(ms != NULL);
assert(ms->Initialised);
return ms->ResultCode;
}
/**
Returns a read-only user friendly error message corresponding to the
last result code. It may contain more useful information such as a
filename or the particular intput that was invalid. This can be displayed
to the user if required.
*/
const char* MutScanGetResultString( mutscan_t* ms )
{
assert(ms != NULL);
assert(ms->Initialised);
return ms->ResultString;
}
/**
Returns the number of tags generated by the mutation scanner and
available to be read.
*/
int MutScanGetTagCount( mutscan_t* ms )
{
assert(ms != NULL);
assert(ms->Initialised);
return ms->TagCount;
}
/**
Returns a pointer to the 'nth' tag in the list. If the tag item is empty,
a null pointer is returned.
*/
mutlib_tag_t* MutScanGetTag( mutscan_t* ms, int n )
{
assert(ms != NULL);
assert(ms->Initialised);
assert(n<ms->TagCount);
if( n < ms->TagCount )
{
assert(ms->Tag != NULL);
return &ms->Tag[n];
}
return 0;
}
/**
Executes the trace alignment algorithm.
*/
mutlib_result_t MutScanExecute( mutscan_t* ms )
{
enum { STATE_INITIALISE, STATE_VALIDATE_INPUT, STATE_TRACE_ALIGN,
STATE_TRACE_DIFFERENCE, STATE_TRACE_PREPROCESS, STATE_MUTATION_ANALYSIS,
STATE_MUTATION_POSITION, STATE_COVERAGE_TAG, STATE_MUTATION_TAG,
STATE_EXIT };
int n;
tracealign_t ta;
mutlib_result_t Result;
mutlib_strand_t Strand = MUTLIB_STRAND_FORWARD; // silence warning
MutScanParameters Parameter;
Alignment Aligner;
MutScanAnalyser Analyser;
int SamplesPerBase = 1;
MutScanPreprocessor Preprocessor[2];
Trace AlignedTrace[2];
int AlignedTraceClipL[2];
int AlignedTraceClipR[2];
Trace* DifferenceTrace = 0;
bool Done = false;
int State = STATE_INITIALISE;
const int BASE_MARGIN_LEFT = 2;
const int BASE_MARGIN_RIGHT = 6;
assert(ms != NULL);
assert(ms->Initialised);
try
{
while(!Done)
{
switch(State)
{
case STATE_INITIALISE:
// Destroy old results
TraceAlignInit( &ta );
MutScanDestroyResults( ms );
Strand = ms->InputTrace.Strand;
ms->ResultCode = MUTLIB_RESULT_SUCCESS;
ms->ResultString = new char [256];
ms->ResultString[0] = 0;
State = STATE_VALIDATE_INPUT;
break;
case STATE_VALIDATE_INPUT:
// Check input values, adjust rhs clip point to catch indels
if( ms->InputTrace.New && (ms->InputTrace.ClipR>0) )
ms->InputTrace.ClipR += BASE_MARGIN_RIGHT;
for( n=0; n<MUTSCAN_PARAMETERS; n++ )
Parameter[n].Value( ms->Parameter[n] );
if( MutScanValidateInput(ms,Parameter) )
State = STATE_EXIT;
else
State = STATE_TRACE_ALIGN;
ms->InputTrace.New = 0;
break;
case STATE_TRACE_ALIGN:
// Align the reference and input traces
TraceAlignSetReference( &ta, Strand, ms->ReferenceTrace[Strand].Trace, ms->ReferenceTrace[Strand].ClipL, ms->ReferenceTrace[Strand].ClipR );
TraceAlignSetInput( &ta, Strand, ms->InputTrace.Trace, ms->InputTrace.ClipL, ms->InputTrace.ClipR );
if( TraceAlignExecute(&ta) != MUTLIB_RESULT_SUCCESS )
{
ms->ResultCode = TraceAlignGetResultCode( &ta );
std::strcpy( ms->ResultString, TraceAlignGetResultString(&ta) );
State = STATE_EXIT;
break;
}
for( int n=0; n<2; n++ )
AlignedTrace[n].Wrap( TraceAlignGetAlignment(&ta, static_cast<mutlib_input_t>(n), &AlignedTraceClipL[n], &AlignedTraceClipR[n]), false );
State = STATE_TRACE_PREPROCESS;
break;
case STATE_TRACE_PREPROCESS:
// Preprocess the traces. We scan beyond the right hand clip point
// to find indels. Where possible, we also start scanning from the
// left margin to avoid discontinuties at the edges of the alignment.
{State = STATE_TRACE_DIFFERENCE;
SamplesPerBase = AlignedTrace[MUTLIB_INPUT_REFERENCE].IntervalMode();
int SampleMarginLeft = BASE_MARGIN_LEFT * SamplesPerBase;
for( int n=0; n<2; n++ )
{
int SampleMarginRight = AlignedTrace[n].Samples() - SamplesPerBase;
Result = Preprocessor[n].Execute( ms, AlignedTrace[n], n, SampleMarginLeft, SampleMarginRight );
if( Result != MUTLIB_RESULT_SUCCESS )
{
State = STATE_EXIT;
break;
}
}
break;}
case STATE_TRACE_DIFFERENCE:
// Subtract the two aligned traces
DifferenceTrace = AlignedTrace[MUTLIB_INPUT].Subtract( AlignedTrace[MUTLIB_INPUT_REFERENCE] );
if( DifferenceTrace )
{
DifferenceTrace->Floor( 35 );
DifferenceTrace->FloorHalfwaves();
DifferenceTrace->FloorNarrowPeaks( SamplesPerBase/2 );
DifferenceTrace->FillGaps();
#ifdef VERBOSE_DEBUG
char buffer[256];
std::strcpy( buffer, AlignedTrace[MUTLIB_INPUT].Name() );
std::strcat( buffer, "_diff.ztr" );
DifferenceTrace->SaveAs( buffer );
#endif
}
State = STATE_MUTATION_ANALYSIS;
break;
case STATE_MUTATION_ANALYSIS:
// Search for and analyse the traces for mutations
Result = Analyser.Execute( ms, Preprocessor, AlignedTrace, DifferenceTrace );
if( Result != MUTLIB_RESULT_SUCCESS )
State = STATE_EXIT;
else
State = STATE_MUTATION_POSITION;
break;
case STATE_MUTATION_POSITION: {
// Map mutation positions back onto original traces
MutationTag* pTag = Analyser.MutationTagList.First();
while( pTag )
{
if( !pTag->Marked() )
{
// Trace function returns zero-based baseno, so we have to add 1
int Base = AlignedTrace[MUTLIB_INPUT].BaseNumberFromSamplePosition( pTag->Position(1) );
Base += 1;
Base += AlignedTraceClipL[MUTLIB_INPUT];
pTag->Position( 0, Base );
}
pTag = Analyser.MutationTagList.Next();
}
State = STATE_COVERAGE_TAG;
break; }
case STATE_COVERAGE_TAG: {
// Create a coverage mutation tag
MutationTag* pTag = new MutationTag( "MCOV" );
pTag->Strand( Strand );
pTag->Position( 0, AlignedTraceClipL[MUTLIB_INPUT]+1 );
pTag->Position( 1, AlignedTraceClipR[MUTLIB_INPUT]-1 );
Analyser.MutationTagList.Append( pTag );
State = STATE_MUTATION_TAG;
break; }
case STATE_MUTATION_TAG:
// Create a mutation tags array for output
if( Analyser.MutationTagList.Count() > 0 )
{
// Copy tags from list into a C-style array
SimpleArray<mutlib_tag_t> OutTag;
OutTag.Create( Analyser.MutationTagList.Count() );
CopyTags( OutTag, Analyser.MutationTagList );
if( (Strand==MUTLIB_STRAND_REVERSE) && (Parameter[MUTSCAN_PARAMETER_COMPLEMENT_TAGS].Value()>0.0) )
CompTags( OutTag );
SortTags( OutTag );
PruneTags( OutTag );
if( OutTag.Length() > (ms->Parameter[MUTSCAN_PARAMETER_ALIGNFAIL_THRESHOLD]+1) )
{
ms->ResultCode = MUTLIB_RESULT_ALIGNMENT_FAILURE;
std::sprintf( ms->ResultString, "Trace alignment failed for %s\n", ms->InputTrace.Trace->trace_name );
}
ms->Tag = OutTag.Raw();
ms->TagCount = OutTag.Length();
OutTag.AutoDestroy( false );
}
State = STATE_EXIT;
break;
case STATE_EXIT:
// Quit
Done = true;
break;
}
}
}
catch( std::bad_alloc& )
{
// Memory allocation error
ms->ResultCode = MUTLIB_RESULT_OUT_OF_MEMORY;
std::strcpy( ms->ResultString, "Not enough memory available to complete the operation.\n" );
}
catch(...)
{
// Unknown exceptions
ms->ResultCode = MUTLIB_RESULT_UNEXPECTED_EXCEPTION;
std::strcpy( ms->ResultString, "An unexpected fatal exception has occurred, please "
"report the details to staden-package@mrc-lmb.cam.ac.uk.\n" );
}
// Exit
if( DifferenceTrace )
delete DifferenceTrace;
TraceAlignDestroy( &ta );
return ms->ResultCode;
}
|