1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#!/usr/bin/env python
# coding: utf-8
# DO NOT EDIT
# Autogenerated from the notebook generic_mle.ipynb.
# Edit the notebook and then sync the output with this file.
#
# flake8: noqa
# DO NOT EDIT
# # Maximum Likelihood Estimation (Generic models)
# This tutorial explains how to quickly implement new maximum likelihood
# models in `statsmodels`. We give two examples:
#
# 1. Probit model for binary dependent variables
# 2. Negative binomial model for count data
#
# The `GenericLikelihoodModel` class eases the process by providing tools
# such as automatic numeric differentiation and a unified interface to
# ``scipy`` optimization functions. Using ``statsmodels``, users can fit new
# MLE models simply by "plugging-in" a log-likelihood function.
# ## Example 1: Probit model
import numpy as np
from scipy import stats
import statsmodels.api as sm
from statsmodels.base.model import GenericLikelihoodModel
# The ``Spector`` dataset is distributed with ``statsmodels``. You can
# access a vector of values for the dependent variable (``endog``) and a
# matrix of regressors (``exog``) like this:
data = sm.datasets.spector.load_pandas()
exog = data.exog
endog = data.endog
print(sm.datasets.spector.NOTE)
print(data.exog.head())
# Them, we add a constant to the matrix of regressors:
exog = sm.add_constant(exog, prepend=True)
# To create your own Likelihood Model, you simply need to overwrite the
# loglike method.
class MyProbit(GenericLikelihoodModel):
def loglike(self, params):
exog = self.exog
endog = self.endog
q = 2 * endog - 1
return stats.norm.logcdf(q * np.dot(exog, params)).sum()
# Estimate the model and print a summary:
sm_probit_manual = MyProbit(endog, exog).fit()
print(sm_probit_manual.summary())
# Compare your Probit implementation to ``statsmodels``' "canned"
# implementation:
sm_probit_canned = sm.Probit(endog, exog).fit()
print(sm_probit_canned.params)
print(sm_probit_manual.params)
print(sm_probit_canned.cov_params())
print(sm_probit_manual.cov_params())
# Notice that the ``GenericMaximumLikelihood`` class provides automatic
# differentiation, so we did not have to provide Hessian or Score functions
# in order to calculate the covariance estimates.
#
#
# ## Example 2: Negative Binomial Regression for Count Data
#
# Consider a negative binomial regression model for count data with
# log-likelihood (type NB-2) function expressed as:
#
# $$
# \mathcal{L}(\beta_j; y, \alpha) = \sum_{i=1}^n y_i ln
# \left ( \frac{\alpha exp(X_i'\beta)}{1+\alpha exp(X_i'\beta)} \right
# ) -
# \frac{1}{\alpha} ln(1+\alpha exp(X_i'\beta)) + ln \Gamma (y_i +
# 1/\alpha) - ln \Gamma (y_i+1) - ln \Gamma (1/\alpha)
# $$
#
# with a matrix of regressors $X$, a vector of coefficients $\beta$,
# and the negative binomial heterogeneity parameter $\alpha$.
#
# Using the ``nbinom`` distribution from ``scipy``, we can write this
# likelihood
# simply as:
#
import numpy as np
from scipy.stats import nbinom
def _ll_nb2(y, X, beta, alph):
mu = np.exp(np.dot(X, beta))
size = 1 / alph
prob = size / (size + mu)
ll = nbinom.logpmf(y, size, prob)
return ll
# ### New Model Class
#
# We create a new model class which inherits from
# ``GenericLikelihoodModel``:
from statsmodels.base.model import GenericLikelihoodModel
class NBin(GenericLikelihoodModel):
def __init__(self, endog, exog, **kwds):
super(NBin, self).__init__(endog, exog, **kwds)
def nloglikeobs(self, params):
alph = params[-1]
beta = params[:-1]
ll = _ll_nb2(self.endog, self.exog, beta, alph)
return -ll
def fit(self, start_params=None, maxiter=10000, maxfun=5000, **kwds):
# we have one additional parameter and we need to add it for summary
self.exog_names.append('alpha')
if start_params == None:
# Reasonable starting values
start_params = np.append(np.zeros(self.exog.shape[1]), .5)
# intercept
start_params[-2] = np.log(self.endog.mean())
return super(NBin, self).fit(start_params=start_params,
maxiter=maxiter,
maxfun=maxfun,
**kwds)
# Two important things to notice:
#
# + ``nloglikeobs``: This function should return one evaluation of the
# negative log-likelihood function per observation in your dataset (i.e.
# rows of the endog/X matrix).
# + ``start_params``: A one-dimensional array of starting values needs to
# be provided. The size of this array determines the number of parameters
# that will be used in optimization.
#
# That's it! You're done!
#
# ### Usage Example
#
# The [Medpar](https://raw.githubusercontent.com/vincentarelbundock/Rdatas
# ets/doc/COUNT/medpar.html)
# dataset is hosted in CSV format at the [Rdatasets repository](https://ra
# w.githubusercontent.com/vincentarelbundock/Rdatasets). We use the
# ``read_csv``
# function from the [Pandas library](https://pandas.pydata.org) to load
# the data
# in memory. We then print the first few columns:
#
import statsmodels.api as sm
medpar = sm.datasets.get_rdataset("medpar", "COUNT", cache=True).data
medpar.head()
# The model we are interested in has a vector of non-negative integers as
# dependent variable (``los``), and 5 regressors: ``Intercept``,
# ``type2``,
# ``type3``, ``hmo``, ``white``.
#
# For estimation, we need to create two variables to hold our regressors
# and the outcome variable. These can be ndarrays or pandas objects.
y = medpar.los
X = medpar[["type2", "type3", "hmo", "white"]].copy()
X["constant"] = 1
# Then, we fit the model and extract some information:
mod = NBin(y, X)
res = mod.fit()
# Extract parameter estimates, standard errors, p-values, AIC, etc.:
print('Parameters: ', res.params)
print('Standard errors: ', res.bse)
print('P-values: ', res.pvalues)
print('AIC: ', res.aic)
# As usual, you can obtain a full list of available information by typing
# ``dir(res)``.
# We can also look at the summary of the estimation results.
print(res.summary())
# ### Testing
# We can check the results by using the statsmodels implementation of the
# Negative Binomial model, which uses the analytic score function and
# Hessian.
res_nbin = sm.NegativeBinomial(y, X).fit(disp=0)
print(res_nbin.summary())
print(res_nbin.params)
print(res_nbin.bse)
# Or we could compare them to results obtained using the MASS
# implementation for R:
#
# url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdataset
# s/csv/COUNT/medpar.csv'
# medpar = read.csv(url)
# f = los~factor(type)+hmo+white
#
# library(MASS)
# mod = glm.nb(f, medpar)
# coef(summary(mod))
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 2.31027893 0.06744676 34.253370 3.885556e-257
# factor(type)2 0.22124898 0.05045746 4.384861 1.160597e-05
# factor(type)3 0.70615882 0.07599849 9.291748 1.517751e-20
# hmo -0.06795522 0.05321375 -1.277024 2.015939e-01
# white -0.12906544 0.06836272 -1.887951 5.903257e-02
#
# ### Numerical precision
#
# The ``statsmodels`` generic MLE and ``R`` parameter estimates agree up
# to the fourth decimal. The standard errors, however, agree only up to the
# second decimal. This discrepancy is the result of imprecision in our
# Hessian numerical estimates. In the current context, the difference
# between ``MASS`` and ``statsmodels`` standard error estimates is
# substantively irrelevant, but it highlights the fact that users who need
# very precise estimates may not always want to rely on default settings
# when using numerical derivatives. In such cases, it is better to use
# analytical derivatives with the ``LikelihoodModel`` class.
|