File: pl2cpp2.doc

package info (click to toggle)
swi-prolog 9.0.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 82,408 kB
  • sloc: ansic: 387,503; perl: 359,326; cpp: 6,613; lisp: 6,247; java: 5,540; sh: 3,147; javascript: 2,668; python: 1,900; ruby: 1,594; yacc: 845; makefile: 428; xml: 317; sed: 12; sql: 6
file content (2192 lines) | stat: -rw-r--r-- 82,410 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
\chapter{A C++ interface to SWI-Prolog (Version 2)}
\label{sec:cpp2}

\section{Summary of changes between Versions 1 and 2}
\label{sec:summary-cpp2-changes}

Version 1 is in \file{SWI-cpp.h}; version 2 is in \file{SWI-cpp2.h}.

The overall structure of the API has been retained - that is,
it is a thin layer on top of the interface provided by
\file{SWI-Prolog.h}. Based on experience with the API,
most of the conversion operators have been removed or deprecated,
and replaced by "getter" methods. The overloaded constructors have
been replaced by subclasses for the various types. Some changes
were also made to ensure that the \const{[]} operator for \ctype{PlTerm}
and \ctype{PlTermv} doesn't cause unexpected implicit conversions.
    \footnote{If there is an implicit conversion operator from
    \ctype{PlTerm} to \ctype{term_t} and also to \ctype{char*}, then
    the \const{[]} operator is ambiguous in
    \exam{PlTerm t=...;  f(t[0])}
    if \exam{f} is overloaded to accept a \ctype{term_t} or \ctype{char*}.
    }

More specifically:
\begin{itemize}
  \item
    The constructor \cfuncref{PlTerm}{} is not available - instead,
    you should use the appropriate subclass' constructor
    (\cfuncref{PlTerm_var}{}, \cfuncref{PlTerm_atom}{a},
    \cfuncref{PlTerm_term_t}{t}, \cfuncref{PlTerm_integer}{i},
    \cfuncref{PlTerm_int64}{i}, \cfuncref{PlTerm_uint64}{i},
    \cfuncref{PlTerm_size_t}{i},
    \cfuncref{PlTerm_float}{v}, or \cfuncref{PlTerm_pointer}{p}).
  \item
    Instead of returning \const{false} from a predicate to indicate
    failure, you can use \exam{throw PlFail()}. The convenience
    function \cfuncref{PlCheck}{rc} can be used to throw \exam{PlFail()},
    if a \const{false} is returned from a  function in \file{SWI-Prolog.h}
\item
    The "cast" operators (e.g., \exam{(char*)t}, \exam{(int64_t)t})
    have been deprecated, replaced by "getters" (e.g.,
    \exam{t.as_string()}, \exam{t.as_int64_t()}).\footnote{The form
    \exam{(char*)t} is a C-style cast; C++'s preferred form is
    more verbose: \exam{static_cast<char*>(t)}.}
  \item
    The overloaded assignment operator for unification is deprecated;
    replaced by \cfuncref{unify_term}{}, \cfuncref{unify_atom}{}, etc., and the helper
    \cfuncref{PlCheck}{}.
  \item
    Methods that return \ctype{char*} have been replaced by methods
    that return \ctype{std::string} to ensure that lifetime issues
    don't cause subtle bugs.\footnote{If you want to
    return a \ctype{char*} from a function, you should not do
    \exam{return t.as_string().c_str()} because that will return
    a pointer to local or stack memory. Instead, you will need to
    change your interface to return a \ctype{std::string} and apply
    the \exam{c_str()} method to it. These errors can \emph{sometimes} be caught by
    specifying the Gnu C++ or Clang options \exam{-Wreturn-stack-address}
    or \exam{-Wreturn-local-addr} - Clang seems to do a better
    analysis.}
  \item
    Type-checking methods have been added: \cfuncref{type}{}, \cfuncref{is_variable}{},
    \cfuncref{is_atom}{}, etc.
  \item
    \ctype{PlString} has been renamed to \ctype{PlTerm_string} to make it clear
    that it's a term that contains a Prolog string.
  \item
    More \exam{PL_...(term_t, ...)} methods have been added to \ctype{PlTerm}.
  \item
    \ctype{std::string} and \ctype{std::wstring} are now supported in most
    places where \ctype{char*} or \ctype{wchar_t*} are allowed.
  \item
    Most functions/methods that return an \ctype{int} for true/false now
    return a C++ \ctype{bool}.
  \item
    The wrapped C types fields (\ctype{term_t}, \ctype{atom_t}, etc.)
    have been renamed from \exam{handle}, \exam{ref}, etc. to
    \exam{C_}.\footnote{This is done by subclassing from
    \ctype{Wrapped<term_t>}, \ctype{Wrapped<atom_t>}, etc., which
    define the field \exam{C_}, standard constructors, the methods
    \cfuncref{is_null}{}, \cfuncref{not_null}{}, \cfuncref{reset}{},
    and \cfuncref{reset}{v}, plus the constant \const{null}.}
  \item
    A convenience class \ctype{PlForeignContextPtr<\emph{ContextType}>}
    has been added, to simplify dynamic memory allocation in
    non-deterministic predicates.
  \item
    A convenience function \cfuncref{PlRewindOnFail}{} has been added,
    to simplify non-deterministic code that does backtracking by
    checking unification results.
  \item
    \ctype{PlStringBuffers} provides a simpler interface for allocating
    strings on the stack than PL_STRINGS_MARK() and PL_STRINGS_RELEASE().
\end{itemize}

More details are given in \secref{cpp2-rationale} and
\secref{cpp2-porting-1-2}.

\section{Introduction (version 2)}
\label{sec:cpp2-intro}

C++ provides a number of features that make it possible to define a
more natural and concise interface to dynamically typed languages than
plain C does. Using programmable type-conversion (\jargon{casting})
and overloading,
native data-types can be translated automatically into appropriate
Prolog types, automatic destructors can be used to deal with most of the
cleanup required and C++ exception handling can be used to map Prolog
exceptions and interface conversion errors to C++ exceptions, which are
automatically mapped to Prolog exceptions as control is turned back to
Prolog.

More information on the SWI-Prolog native types is given in
\href{https://www.swi-prolog.org/pldoc/man?section=foreigntypes}{Interface
Data Types}.

It would be tempting to use C++ conversion operators and method
overloading to automatically convert between C++ types such as
\ctype{std::string} and \ctype{int64_t} and Prolog foreign language
interface types such as \ctype{term_t} and \ctype{atom_t}. However,
types such as \ctype{term_t} are unsigned integers, so many of the
automatic type conversions can easily do something other than what the
programmer intended, resulting in subtle bugs that are difficult to
find. Therefore Version 2 of this interface reduces the amount of
automatic conversion and introduces some redundancy, to avoid these
subtle bugs, by using "getter" methods rather than conversion
operators, and using naming conventions for explicitly specifying
constructors.

\subsection{Acknowledgements (version 2)}
\label{sec:cpp2-acknowledgements}

I would like to thank Anjo Anjewierden for comments on the definition,
implementation and documentation of this package. Peter Ludemann
modified the interface to remove some pitfalls, and also added
some convenience functions (see \secref{summary-cpp2-changes}).

\section{The life of a PREDICATE (version 2)}
\label{sec:cpp2-life-of-a-predicate}

A foreign predicate is defined using the \cfuncref{PREDICATE}{}
macro.\footnote{Plus a few variations on this, such as
\cfuncref{PREDICATE_NONDET}{}, \cfuncref{NAMED_PREDICATE}{}, and
\cfuncref{NAMED_PREDICATE_NONDET}{}.} This defines an internal name for
the function, registers it with the SWI-Prolog runtime (where it will
be picked up by the use_foreign_library/1 directive), and defines the
names \exam{A1}, \exam{A2}, etc. for the arguments.\footnote{You can
define your own names for the arguments, for example: \exam{auto x=A1,
y=A2, result=A3;}.}  If a non-deterministic predicate is being
defined, an additional parameter \exam{handle} is defined (of type
\ctype{control_t}).

The foreign predicate returns a value of \exam{true} or \exam{false}
to indicate whether it succeeded or failed.\footnote{Non-deterministic
predicates can also return a "retry" value.}  If a predicate fails, it
could be simple failure (the equivalent of calling the builtin fail/0)
or an error (the equivalent of calling throw/1). When an exception is
raised, it is important that a return be made to the calling
environment as soon as possible. In C code, this requires checking
every call to check for failure, which can become cumbersome. C++ has
exceptions, so instead the code can wrap calls to \cfuncref{PL_*}{} functions with
\cfuncref{PlCheck}{}, which will do \exam{throw PlFail()} to exit from the top
level of the foreign predicate, and handle the failure or exception
appropriately.

The following three snippets do the same thing (for implementing the
equivalent of =/2):

\begin{code}
PREDICATE(eq, 2)
{ PlCheck(A1.unify_term(A2));
  return true;
}
\end{code}

\begin{code}
PREDICATE(eq, 2)
{ return A1.unify_term(A2);
}
\end{code}

\begin{code}
PREDICATE(eq, 2)
{ PlCheck(PL_unify(A1.C_, A2.C_));
  return true;
}
\end{code}

\section{Overview (version 2)}
\label{sec:cpp2-overview}

The most useful area for exploiting C++ features is type-conversion.
Prolog variables are dynamically typed and all information is passed
around using the C-interface type \ctype{term_t}. In C++, \ctype{term_t}
is embedded in the \jargon{lightweight} class \ctype{PlTerm}.
Constructors and operator definitions provide flexible operations and
integration with important C-types (\ctype{char *}, \ctype{wchar_t*},
\ctype{long} and \ctype{double}), plus the C++-types (\ctype{std::string},
\ctype{std::wstring}).

\subsection{Design philosophy of the classes}
\label{sec:cpp2-philosophy}

See also \secref{cpp2-naming}.

The general philosophy for C++ classes is that a "half-created" object
should not be possible - that is, the constructor should either
succeed with a completely usable object or it should throw an
exception. This API tries to follow that philosophy, but there are
some important exceptions and caveats. (For more on how the C++ and
Prolog exceptions interrelate, see \secref{cpp2-exceptions}.)

The various classes (\ctype{PlAtom}, \ctype{PlTerm}, etc.) are thin
wrappers around the C interface's types (\ctype{atom_t},
\ctype{term_t}, etc.). As such they inherit the concept of "null" from
these types (which is abstracted as \ctype{PlAtom::null},
\ctype{PlTerm::null}, etc., which typically is equivalent to
\const{0}). You can check whether the object is "fully created" by
using the \cfuncref{verify}{} method - it will throw an exception if the
object is \const{null}.

However, most of the classes have constructors that create a
"complete" object. For example,
\begin{code}
PlAtom foo("foo");
\end{code}
will ensure that the object \exam{foo} is useable and will throw an
exception if the atom can't be created.

To help avoid programming errors, most of the classes do not have a
default "empty" constructor. For example, if you with to create a
\ctype{PlAtom} that is uninitialized, you must explicitly use
\exam{PlAtom(PlAtom::null)}. This make some code a bit more cumbersome
because you can't omit the default constructors in struct initalizers.

Many of the classes wrap long-lived items, such as atoms, functors,
predicates, or modules. For these, it's often a good idea to define
them as \ctype{static} variables that get created at load time, so
that a lookup for each use isn't needed (atoms are unique, so
\exam{PlAtom("foo")} requires a lookup for an atom \exam{foo} and
creates one if it isn't found). Sometimes, it's desirable to create
them "lazily", such as:

\begin{code}
static PlAtom foo(PlAtom::null};
   ...
if ( foo.is_null() )
  foo = PlAtom("foo");
\end{code}

The class \ctype{PlTerm} (which wraps \ctype{term_t}) is the most
used. Although a \ctype{PlTerm} object can be created
from a \ctype{term_t} value, it is intended to be used with a
constructor that gives it an initial value. The default constructor
calls PL_new_term_ref() and throws an exception if this fails. The
various constructors are described in
\secref{cpp2-plterm-constructurs}. Note that the default constructor
is not public; to create a "variable" term, you should use the
subclass constructor \cfuncref{PlTerm_var}{}.

\subsection{Summary of classes}
\label{sec:class-summary}

The list below summarises the classes defined in the C++ interface.

\begin{description}
    \classitem{PlTerm}
Generic Prolog term that wraps \ctype{term_t} (for more details on
\ctype{term_t}, see
\href{https://www.swi-prolog.org/pldoc/man?section=foreigntypes}{Interface
Data Types}).
This is a "base class" whose constructor is
protected; subclasses specify the actual contents. Additional methods
allow checking the Prolog type, unification, comparison, conversion to
native C++-data types, etc. See \secref{cpp2-plterm-casting}.

The subclass constructors are as follows. If a constructor fails
(e.g., out of memory), a \ctype{PlException} is thrown.
\begin{description}
    \classitem{PlTerm_atom}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains an atom.
    \classitem{PlTerm_var}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains an uninstantiated variable. Typically
this term is then unified with another object.
    \classitem{PlTerm_term_t}
Subclass of \ctype{PlTerm} with constructors for building
a term from a C \ctype{term_t}.
    \classitem{PlTerm_integer}
Subclass of \ctype{PlTerm} with constructors for building a term that
contains a Prolog integer from a
\ctype{long}.\footnote{PL_put_integer() takes a \ctype{long} argument.}
    \classitem{PlTerm_int64}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains a Prolog integer from a \ctype{int64_t}.
    \classitem{PlTerm_uint64}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains a Prolog integer from a \ctype{uint64_t}.
    \classitem{PlTerm_size_t}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains a Prolog integer from a \ctype{size_t}.
    \classitem{PlTerm_float}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains a Prolog float.
    \classitem{PlTerm_pointer}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains a raw pointer. This is mainly for
backwards compatibility; new code should use \jargon{blobs}.
    \classitem{PlTerm_string}
Subclass of \ctype{PlTerm} with constructors for building
a term that contains a Prolog string object.
    \classitem{PlTerm_list_codes}
Subclass of \ctype{PlTerm} with constructors for building
Prolog lists of character integer values.
    \classitem{PlTerm_chars}
Subclass of \ctype{PlTerm} with constructors for building
Prolog lists of one-character atoms (as atom_chars/2).
    \classitem{PlTerm_tail}
SubClass of \ctype{PlTerm} for building and analysing Prolog lists.
\end{description}

Additional subclasses of \ctype{PlTerm} are:
\begin{description}
    \classitem{PlCompound}
Subclass of \ctype{PlTerm} with constructors for building compound
terms. If there is a single string argument, then PL_chars_to_term()
or PL_wchars_to_term() is used to parse the string and create the
term. If the constructor has two arguments, the first is name of
a functor and the second is a \ctype{PlTermv} with the arguments.
    \classitem{PlTermv}
Vector of Prolog terms. See PL_new_term_refs(). The \const{[]} operator
is overloaded to access elements in this vector.  \ctype{PlTermv} is used
to build complex terms and provide argument-lists to Prolog goals.
    \classitem{PlException}
Subclass of \ctype{PlTerm} representing a Prolog exception.  Provides
methods for the Prolog communication and mapping to human-readable text
representation.
    \classitem{PlTypeError}
Subclass of \ctype{PlException} for representing a Prolog
\except{type_error} exception.
    \classitem{PlDomainError}
Subclass of \ctype{PlException} for representing a Prolog
\except{domain_error} exception.
    \classitem{PlExistenceError}
Subclass of \ctype{PlException} for representing a Prolog
\except{existence_error} exception.
    \classitem{PlPermissionError}
Subclass of \ctype{PlException} for representing a Prolog
\except{permission_error} exception.
\end{description}

    \classitem{PlAtom}
Allow for manipulating atoms (\ctype{atom_t}) in their internal Prolog
representation for fast comparison. (For more details on
\ctype{atom_t}, see
\href{https://www.swi-prolog.org/pldoc/man?section=foreigntypes}{Interface
Data Types}).
\classitem{PlFunctor}
A wrapper for \ctype{functor_t}, which maps to the internal
representation of a name/arity pair.
\classitem{PlPredicate}
A wrapper for \ctype{predicate_t}, which maps to the internal
representation of a Prolog predicate.
\classitem{PlModule}
A wrapper for \ctype{module_t}, which maps to the internal
representation of a Prolog module.
    \classitem{PlQuery}
Represents opening and enumerating the solutions to a Prolog query.
    \classitem{PlFail}
Can be thrown to short-circuit processing and return failure to Prolog.
Performance-critical code should use \exam{return false} instead if
failure is expected.
    \classitem{PlFrame}
This utility-class can be used to discard unused term-references as well
as to do `\jargon{data-backtracking}'.
    \classitem{PlEngine}
This class is used in \jargon{embedded} applications (applications
where the main control is held in C++).  It provides creation and
destruction of the Prolog environment.
    \classitem{PlRegister}
The encapsulation of PL_register_foreign() is defined to be able to
use C++ global constructors for registering foreign predicates.
\end{description}

The required C++ function header and registration of a predicate
is arranged through a macro called \cfuncref{PREDICATE}{}.

\subsection{Naming conventions, utility functions and methods (version 2)}
\label{sec:cpp2-naming}

See also \secref{cpp2-philosophy}.

The classes all have names starting with "Pl", using CamelCase;
this contrasts with the C functions that start with "PL_" and
use underscores.

The wrapper classes (\ctype{PlFunctor}, \ctype{PlAtom}, \ctype{PlTerm})
all contain a field \exam{C_} that contains the wrapped value
(\ctype{functor_t}, \ctype{atom_t}, \ctype{term_t} respectively).

The wrapper classes (which subclass \ctype{WrappedC<\ldots>})
all define the following methods and constants:
\begin{itemize}
  \item
    default constructor (sets the wrapped value to \exam{null})
  \item
    constructor that takes the wrapped value (e.g.,
    for \ctype{PlAtom}, the constructor takes an \ctype{atom_t}
    value).
  \item
    \exam{C_} - the wrapped value.
    This can be used directly when calling C functions,
    for example, if \exam{t} and \exam{a} are of type \ctype{PlTerm}
    and \ctype{PlAtom}: \verb$Plcheck(PL_put_atom(t.C_,a.C_))$.
  \item
    \exam{null} - the null value (typically \exam{0}, but
    code should not rely on this)
  \item
    \exam{is_null()}, \exam{not_null()} - test
    for the wrapped value being \exam{null}.
  \item
    \exam{reset()} - set the wrapped value to \exam{null}
  \item
    \exam{reset(new_value)} - set the wrapped value
  \item
    \exam{verify()} - if the wrapped value (\exam{C_})
    is \exam{null}, throw a \cfuncref{PlFail}{} exception. Typically, this check
    is done after an allocation function such as Plnew_term_ref()
    returns a null value, so the \cfuncref{PlFail}{} is turned into a a resource
    error. However, if there is no pending exception, this results in
    simple failure (see \secref{cpp2-exceptions-notes}).
\item
    The \ctype{bool} operator is turned off - you should
    use not_null() instead.\footnote{The reason: a
    \ctype{bool} conversion  causes ambiguity with \exam{PlAtom(PlTterm)}
    and \exam{PlAtom(atom_t)}.}
\end{itemize}

The \exam{C_} field can be used wherever a \ctype{atom_t} or
\ctype{term_t} is used. For example, the PL_scan_options() example
code can be written as follows.  Note the use of \exam{\&callback.C_}
to pass a pointer to the wrapped \ctype{term_t} value.

\begin{code}
PREDICATE(mypred, 2)
{ auto options = A2;
  int        quoted = false;
  size_t     length = 10;
  PlTerm_var callback;

  PlCheck(PL_scan_options(options, 0, "mypred_options", mypred_options,
	                  &quoted, &length, &callback.C_));
  callback.record(); // Needed if callback is put in a blob that Prolog doesn't know about.
                     // If it were an atom (OPT_ATOM): register_ref().

  <implement mypred>
}
\end{code}

For functions in \file{SWI-Prolog.h} that don't have a C++ equivalent
in \file{SWI-cpp2.h}, \cfuncref{PlCheck}{} is a convenience function that checks
the return code and throws a \ctype{PlFail} exception on failure. The
\cfuncref{PREDICATE}{} code catches \ctype{PlFail} exceptions and
converts them to the \ctype{foreign_t} return code for failure.  If
the failure from the C function was due to an exception (e.g.,
unification failed because of an out-of-memory condition), the foreign
function caller will detect that situation and convert the failure to
an exception.

The "getter" methods for \ctype{PlTerm} all throw an exception if the
term isn't of the expected Prolog type. Where possible, the "getters"
have the same name as the underlying type; but this isn't possible for
types such as \ctype{int} or \ctype{float}, so for these the name is
prepended with "as_".

"Getters" for integers have an additionnal problem, in that C++
doesn't define the sizes of \ctype{int} and \ctype{long}, nor for
\ctype{size_t}. It seems to be impossible to make an overloaded method
that works for all the various combinations of integer types on all
compilers, so there are specific methods for \ctype{int64_t},
\ctype{uint64_t}, \ctype{size_t}.

In some cases,it is possible to overload methods; for example, this
allows the following code without knowing the exact definition of
\ctype{size_t}:
\begin{code}
PREDICATE(p, 1)
{ size_t sz;
  A1.integer(&sz);
     ...
}
\end{code}

\emph{It is strongly recommended that you enable conversion checking.}
For example, with GNU C++, these options (possibly with \exam{-Werror}:
\exam{-Wconversion -Warith-conversion -Wsign-conversion -Wfloat-conversion}.

There is an additional problem with characters - C promotes
them to \ctype{int} but C++ doesn't. In general, this shouldn't
cause any problems, but care must be used with the various
getters for integers.


\section{Examples (version 2)}
\label{sec:cpp2-examples}

Before going into a detailed description of the C++ classes we present
a few examples illustrating the `feel' of the interface.


\subsection{Hello(World) (version 2)}
\label{sec:cpp2-hello-world}

This simple example shows the basic definition of the predicate hello/1
and how a Prolog argument is converted to C-data:

\begin{code}
PREDICATE(hello, 1)
{ cout << "Hello " << A1.as_string() << endl;

  return true;
}
\end{code}

The arguments to \cfuncref{PREDICATE}{} are the name and arity of the predicate.
The macros A<n> provide access to the predicate arguments by position
and are of the type \ctype{PlTerm}. The C or C++ string for a \ctype{PlTerm}
can be extracted using \cfuncref{as_string}{}, or \cfuncref{as_wstring}{} methods;\footnote{The C-string
values can be extracted from \ctype{std::string} by using \cfuncref{c_str}{}, but you
must be careful to not return a pointer to a local/stack value.}
and similar access methods provide an easy type-conversion
for most Prolog data-types, using the output of write/1 otherwise:

\begin{code}
?- hello(world).
Hello world

Yes
?- hello(X)
Hello _G170

X = _G170
\end{code}

\subsection{Adding numbers (version 2)}
\label{sec:cpp2-ex-adding-numbers}

This example shows arithmetic using the C++ interface, including
unification, type-checking, and conversion.  The predicate add/3 adds
the two first arguments and unifies the last with the result.

\begin{code}
PREDICATE(add, 3)
{ return A3.unify_integer(A1.as_long() + A2.as_long());
}
\end{code}

You can use your own variable names instead of \exam{A1},
\exam{A2}, etc.:

\begin{code}
PREDICATE(add, 3)  // add(+X, +Y, +Result)
{ PlTerm x(A1);
  PlTerm y(A2);
  PlTerm result(A3);
  return result.unify_integer(x.as_long() + y.as_long());
}
\end{code}

The \cfuncref{as_long}{} method for a \ctype{PlTerm} performs a PL_get_long_ex()
and throws a C++ exception if the Prolog argument is not a Prolog
integer or float that can be converted without loss to a
\ctype{long}. The \cfuncref{unify_integer}{} method of \ctype{PlTerm} is defined
to perform unification and returns \const{true} or \const{false}
depending on the result.

\begin{code}
?- add(1, 2, X).

X = 3.
?- add(a, 2, X).
[ERROR: Type error: `integer' expected, found `a']
   Exception: (  7) add(a, 2, _G197) ?
\end{code}


\subsection{Average of solutions (version 2)}
\label{sec:cpp2-ex-average}

This example is a bit harder. The predicate average/3 is defined to take
the template \mbox{average(+Var, :Goal, -Average)}, where \arg{Goal}
binds \arg{Var} and will unify \arg{Average} with average of the
(integer) results.

\ctype{PlQuery} takes the name of a predicate and the goal-argument
vector as arguments. From this information it deduces the arity and
locates the predicate. The method \cfuncref{next_solution}{} yields
\const{true} if there was a solution and \const{false} otherwise. If
the goal yields a Prolog exception, it is mapped into a C++ exception.
A return to Prolog does an implicit "cut" (PL_cut_query()); this
can also be done explicitly by the \cfuncref{PlQuery::cut}{} method.

\begin{code}
PREDICATE(average, 3) /* average(+Templ, :Goal, -Average) */
{ long sum = 0;
  long n = 0;

  PlQuery q("call", PlTermv(A2));
  while( q.next_solution() )
  { sum += A1.as_long();
    n++;
  }
  return A3.unify_float(double(sum) / double(n));
}
\end{code}

\begin{code}
?- [user].
|: p(1).
|: p(10).
|: p(20).
|:
% user://1 compiled 0.00 sec, 3 clauses
true.

?- average(X, p(X), Average).
Average = 10.333333333333334.
\end{code}

\section{Rational for changes from version 1 (version 2)}
\label{sec:cpp2-rationale}

\subsection{Implicit constructors and conversion operators}
\label{sec:cpp2-rationale-ctors}

The original version of the C++ interface heavily used implicit
constructors and conversion operators. This allowed, for example:
\begin{code}
PREDICATE(hello, 1)
{ cout << "Hello " << A1.as_string() << endl;
  return true;
}

PREDICATE(add, 3)
{ return A3 = (long)A1 + (long)A2;
}
\end{code}

Version 2 is a bit more verbose:
\begin{code}
PREDICATE(hello, 1)
{ cout << "Hello " << A1.as_string() << endl;
  return true;
}

PREDICATE(add, 3)
{ return A3.unify_int(A1.as_long() + A2.as_long());
}
\end{code}

There are a few reasons for this:
\begin{itemize}
  \item
    The C-style of casts is deprecated in C++, so the expression
    \exam{(char *)A1} becomes the more verbose
    \exam{static_cast<std::string>(A1)}, which is longer than
    \exam{A1.as_string()}. Also, the string casts don't allow for
    specifying encoding.
  \item
    The implicit constructors and conversion operators allowed
    directly calling the foreign language interface functions, for example:
\begin{code}
PlTerm t;
Pl_put_atom_chars(t, "someName");
\end{code}
    whereas this is now required:
\begin{code}
PlTerm t;
Pl_put_atom_chars(t.as_term_t(), "someName");
\end{code}
    However, this is mostly avoided by methods and constructors that
    wrap the foreign language functions:
\begin{code}
PlTerm_atom t("someName");
\end{code}
    or
\begin{code}
auto t = PlTerm_atom("someName");
\end{code}
  \item
    The implicit constructors and conversion operators, combined with
    the C++ conversion rules for integers and floats, could sometimes
    lead to subtle bugs that were difficult to find -- in one case, a
    typo resulted in terms being unified with floating point values when
    the code intended them to be atoms. This was mainly because the
    underlying C types for terms, atoms, etc. are unsigned integers,
    leading to confusion between numeric values and Prolog terms and
    atoms.
\item
    The overloaded assignment operator for unification changed the
    usual C++ semantics for assignments from returning a reference
    to the left-hand-side to returning a ctype{bool}. In addition,
    the result of unification should always be checked (e.g., an
    "always succeed" unification could fail due to an out-of-memory
    error); the \cfuncref{unify_XXX}{} methods return
    a \ctype{bool} and they can be wrapped inside a \cfuncref{PlCheck}{}
    to raise an exception on unification failure.
\end{itemize}

Over time, it is expected that some of these restrictions will be
eased, to allow a more compact coding style that was the intent of the
original API. However, too much use of overloaded
methods/constructors, implicit conversions and constructors can result
in code that's difficult to understand, so a balance needs to be
struck between compactness of code and understandability.

For backwards compatibility, some of the version 1 interface is still
available (except for the implicit constructors and operators), but
marked as "deprecated"; code that depends on the parts that have been
removed can be easily changed to use the new interface.

\subsection{Strings}
\label{sec:cpp2-rationale-strings}

The version API often used \ctype{char*} for both setting and setting
string values. This is not a problem for setting (although encodings
can be an issue), but can introduce subtle bugs in the lifetimes of
pointers if the buffer stack isn't used properly. The buffer stack is
abstracted into \ctype{PlStringBuffers}, but it would be preferable to
avoid its use altogether. C++, unlike C, has a standard string that
allows easily keeping a copy rather than dealing with a pointer that
might become invalid. (Also, C++ strings can contain null characters.)

C++ has default conversion operators from \ctype{char*} to
\ctype{std::string}, so some of the API support only
\ctype{std::string}, even though this can cause a small
inefficiency. If this proves to be a problem, additional overloaded
functions and methods can be provided in future (note that some
compilers have optimizations that reduce the overheads of using
\ctype{std::string}); but for performance-critical code, the C
functions can still be used.

There still remains the problems of Unicode and encodings.
\ctype{std::wstring} is one way of dealing with this. And for
interfaces that use \ctype{std::string}, an encoding can be
specified.\footnote{As of 2022-11, this had only been partially
implemented}. Some of the details for this - such as the
default encoding - may change slightly in the future.

\section{Porting from version 1 to version 2}
\label{sec:cpp2-porting-1-2}

The easiest way of porting from \file{SWI-cpp.h} to \file{SWI-cpp2.h}
is to change the \exam{\#include "SWI-cpp.h"} to \exam{\#include "SWI-cpp2.h"}
and look at the warning and error messages. Where possible, version 2
keeps old interfaces with a "deprecated" flag if there is a better way
of doing things with version 2.

Here is a list of typical changes:
\begin{itemize}
  \item
    Replace \cfuncref{PlTerm}{} constructor with
    \cfuncref{PlTerm_var}{} for uninstantiated variables,
    \cfuncref{PlTerm_atom}{a} for atoms, \cfuncref{PlTerm_term_t}{t}
    for the raw \ctype{term_t}, \cfuncref{PlTerm_integer}{i},
    \cfuncref{PlTerm_float}{v}, or \cfuncref{PlTerm_pointer}{p}.

  \item
    Examine uses of \ctype{char*} or \ctype{wchar_t} and replace them by
    \ctype{std::string} or \ctype{std::wstring} if appropriate.
    For example, \exam{cout << "Hello " << A1.as_string().c_str()() << endl}
    can be replaced by \exam{cout << "Hello " << A1.as_string() << endl}.
    In general, \ctype{std::string} is safer than \ctype{char*} because
    the latter can potentially point to freed memory.

  \item
    Instead of returning \const{false} from a predicate for failure,
    you can do \exam{throw \cfuncref{PlFail}{}}. This mechanism is also used by
    \cfuncref{PlCheck}{rc}. Note that throwing an exception is
    significantly slower than returning \const{false}, so
    performance-critical code should avoid \cfuncref{PlCheck}{rc}.

  \item
    You can use the \cfuncref{PlCheck}{rc} to check the return code
    from a function in \file{SWI-Prolog} and throw a \cfuncref{PlFail}{}
    exception to short-circuit execution and return failure (\const{false})
    to Prolog.

  \item
    \exam{PlAtom::handle} has been replaced by \exam{PlAtom::C_}.

  \item
    \exam{PlTerm::ref} has been replaced by \exam{PlAtom::C_}.

  \item
    \exam{PlFunctor::functor} has been replaced by \exam{PlAtom::C_}.

  \item
    The operator \exam{=} for unification has been deprecated,
    replaced by various \exam{unify_XXX}` methods
    (\cfuncref{PlTerm::unify_term}{t2},
    \cfuncref{PlTerm::unify_atom}{a}, etc.).

  \item
    The various "cast" operators have been deprecated or deleted;
    you should use the various "getter" methods. For example,
    \exam{static_cast<char*>(t)} is replaced by \exam{t.as_string().c_str()};
    \exam{static_cast<int32_t>(t)} is replaced by \exam{t.as_int32_t()}.

  \item
    It is recommended that you do not use \ctype{int} or
    \ctype{long} because of problems porting between Unix and Windows
    platforms; instead, use \ctype{int32_t}, \ctype{int64_t},
    \ctype{uint32_t}, \ctype{uint64_t}, etc.

\end{itemize}

\section{The class PlFail (version 2)}
\label{sec:cpp2-plfail}

The \ctype{PlFail} class is used for short-circuiting a function when
failure or an exception occurs and any errors will be handled in the
code generated by the \cfuncref{PREDICATE}{} macro. See also
\secref{cpp2-exceptions-notes}).

For example, this code:
\begin{code}
PREDICATE(unify_zero, 1)
{ if ( !PL_unify_integer(A1.C_, 0) )
    return false;
  return true;
}
\end{code}
can instead be written this way:
\begin{code}
void
PREDICATE(unify_zero, 1)
{ if ( !PL_unify_integer(A1.C_, 0) )
    throw PlFail();
  return true;
}
\end{code}
or:
\begin{code}
PREDICATE(unify_zero, 1)
{ PlCheck(PL_unify_integer(t.C_, 0));
  return true;
}
\end{code}
or:
\begin{code}
PREDICATE(unify_zero, 1)
{ PlCheck(A1.unify_integer(0));
  return true;
}
\end{code}
or:
\begin{code}
PREDICATE(unify_zero, 1)
{ return A1.unify_integer(0);
}
\end{code}

Using \exam{throw PlFail()} in performance-critical code can cause a
signficant slowdown. A simple benchmark showed a 15x to 20x slowdown
using \exam{throw PlFail()} compared to \exam{return false} (comparing
the first code sample above with the second and third samples; the
speed difference seems to have been because in the second sample, the
compiler did a better job of inlining). However, for most code, this
difference will be barely noticeable.

There was no significant performance difference between the C++
version and this C version:
\begin{code}
static foreign_t
unify_zero(term_t a1)
{ return PL_unify_integer(a1, 0);
}
\end{code}

\subsection{\cfuncref{PlCheck}{} convenience function}
\label{sec:cpp2-plcheck}

In general, wherever there is a method that wraps a C "PL_"
function, \cfuncref{PlCheck}{} can be used to return failure
to Prolog from the "PL_" function.

The code for \cfuncref{PlCheck}{} is very simple - it checks the
return code and throws \ctype{PlFail} if the return code isn't
"true". If the return code is from a Prolog function (that is,
a function starting with "PL_"), the return code can be "false"
either because of failure or because an exception happened.
If the cause is an exception, then the only sensible thing is to
return to Prolog immediately; throwing \ctype{PlFail} will do this.
See also \secref{cpp2-exceptions-notes}.


\section{The class PlTerm (version 2)}
\label{sec:cpp2-plterm}

As we have seen from the examples, the \ctype{PlTerm} class plays a
central role in conversion and operating on Prolog data. This section
provides complete documentation of this class.

\subsection{Constructors (version 2)}
\label{sec:cpp2-plterm-constructurs}

The constructors are defined as subclasses of \ctype{PlTerm}, with
a name that reflects the Prolog type of what is being created
(e.g., \ctype{PlTerm_atom} creates an atom; \ctype{PlTerm_string}
creates a Prolog string).
All of the constructors are
"explicit" because implicit creation of \ctype{PlTerm} objects can lead
to subtle and difficult to debug errors.

\begin{description}
    \constructor{PlTerm}{}
Creates a new initialised "null" term (holding a Prolog variable).
    \constructor{PlTerm_term_t}{term_t t}
Converts between the C-interface and the C++ interface by turning the
term-reference into an instance of \ctype{PlTerm}.  Note that, being a
lightweight class, this is a no-op at the machine-level!
    \constructor{PlTerm_atom}{const char *text}
Creates a term-references holding a Prolog atom representing \arg{text}.
    \constructor{PlTerm_atom}{const wchar_t *text}
Creates a term-references holding a Prolog atom representing \arg{text}.
    \constructor{PlTerm_atom}{const PlAtom \&atom}
Creates a term-references holding a Prolog atom from an atom-handle.
    \constructor{PlTerm_int}{long n}
Creates a term-references holding a Prolog integer representing \arg{n}.
    \constructor{PlTerm_int}{int64_t n}
Creates a term-references holding a Prolog integer representing \arg{n} (up to 64 bits signed).
    \constructor{PlTerm_int}{uint64_t n}
Creates a term-references holding a Prolog integer representing \arg{n} (up to 64 bits unsigned).
    \constructor{PlTerm_float}{double f}
Creates a term-references holding a Prolog float representing \arg{f}.
    \constructor{PlTerm_pointer}{void *ptr}
Creates a term-references holding a Prolog pointer.  A pointer is
represented in Prolog as a mangled integer.  The mangling is designed
to make most pointers fit into a \jargon{tagged-integer}.  Any valid
pointer can be represented.  This mechanism can be used to represent
pointers to C++ objects in Prolog.  Please note that `MyClass' should
define conversion to and from \ctype{void *}.
Also note that in general \jargon{blobs} are a better way of doing this
(see the section on \jargon{blobs} in the Foreign Language Interface
part of the SWI-Prolog manual).

\begin{code}
PREDICATE(make_my_object, 1)
{ auto myobj = new MyClass();

  return A1.unify_pointer(myobj);
}

PREDICATE(my_object_contents, 2)
{ auto myobj = static_cast<MyClass*>(A1.pointer());
  return A2.unify_string(myobj->contents);
}

PREDICATE(free_my_object, 1)
{ auto myobj = static_cast<MyClass*>(A1.pointer());

  delete myobj;
  return true;
}
\end{code}
\end{description}

\subsection{Overview of accessing and changing values (version 2)}
\label{sec:cpp2-plterm-get-put-unify}

The \file{SWI-Prolog.h} header provides various functions for
accessing, setting, and unifying terms, atoms and other types.
Typically, these functions return a \const{0} (\const{false}) or
\const{1} (\const{true}) value for whether they succeeded or not. For
failure, there might also be an exception created - this can be tested
by calling PL_excpetion(0).

There are three major groups of methods:
\begin{itemize}
  \item Put (set) a value, corresponding to the PL_put_*() functions.
  \item Get a value, corresponding to the PL_get_*() and PL_get_*_ex() functions.
  \item Unify a value, corresponding to the PL_unify_*() and PL_unify_*_ex() functions.
\end{itemize}

The "put" operations are typically done on an uninstantiated term (see
the PlTerm_var() constructor). These are expected to succeed, and
typically raise an exception failure (e.g., resource exception) - for
details, see the corresponding PL_put_*() functions in
\href{https://www.swi-prolog.org/pldoc/man?section=foreign-term-construct}{Constructing
Terms}.

For the "get" and "unify" operations, there are three possible failures:
\begin{itemize}
  \item \const{false} return code
  \item unification failure
  \item exception (value of unexpected type or out of resources)
\end{itemize}

Each of these is communicated to Prolog by returning \const{false}
from the top level; exceptions also set a "global" exception term
(using PL_raise_exception()). The C++ programmer usually doesn't have
to worry about this; instead they can \exam{throw PlFail()} for
failure or \exam{throw PlException()} (or one of \ctype{PlException}'s
subclasses) and the C++ API will take care of everything.

\subsection{Converting PlTerm to native C and C++ types (version 2)}
\label{sec:cpp2-plterm-casting}

These are \emph{deprecated} and replaced by the various \exam{as_*()} methods.

\ctype{PlTerm} can be converted to the following types:

\begin{description}
    \cppcast{PlTerm}{term_t}
This cast is used for integration with the C-interface primitives.
    \cppcast{PlTerm}{long}
Yields a \ctype{long} if the \ctype{PlTerm} is a Prolog integer or
float that can be converted without loss to a long.  throws a
\except{type_error} exception otherwise.
    \cppcast{PlTerm}{int}
Same as for \ctype{long}, but might represent fewer bits.
    \cppcast{PlTerm}{double}
Yields the value as a C double if \ctype{PlTerm} represents a
Prolog integer or float.
    \cppcast{PlTerm}{wchar_t *}
    \nodescription
    \cppcast{PlTerm}{char *}
Converts the Prolog argument using PL_get_chars() using the flags
\const{CVT_ALL|CVT_WRITE|BUF_RING}, which implies Prolog atoms and
strings are converted to the represented text.  All other data is
handed to write/1.  If the text is static in Prolog, a direct pointer
to the string is returned.  Otherwise the text is saved in a ring of
16 buffers and must be copied to avoid overwriting.
    \cppcast{PlTerm}{void *}
Extracts pointer value from a term. The term should have been created
by PlTerm::PlTerm(void*).
\end{description}

In addition, the Prolog type (`PL_VARIABLE`, `PL_ATOM`, ... `PL_DICT`)
can be determined using the type() method. There are also boolean
methods that check the type:
\begin{description}
  \cfunction{int}{type}{} See PL_term_type()
  \cfunction{bool}{is_variable}{}  See PL_is_variable()
  \cfunction{bool}{is_ground}{} See PL_is_ground()
  \cfunction{bool}{is_atom} See PL_is_atom()
  \cfunction{bool}{is_integer} See PL_is_integer()
  \cfunction{bool}{is_string} See PL_is_string()
  \cfunction{bool}{is_float} See PL_is_float()
  \cfunction{bool}{is_rational} See PL_is_rational()
  \cfunction{bool}{is_compound} See PL_is_compound()
  \cfunction{bool}{is_callable} See PL_is_callable()
  \cfunction{bool}{is_list} See PL_is_list()
  \cfunction{bool}{is_dict} See PL_is_dict()
  \cfunction{bool}{is_pair} See PL_is_pair()
  \cfunction{bool}{is_atomic} See PL_is_atomic()
  \cfunction{bool}{is_number} See PL_is_number()
  \cfunction{bool}{is_acyclic} See PL_is_acyclic()
  \cfunction{bool}{is_functor}{PlFunctor} See PL_is_functor()
\end{description}

\subsection{Unification (version 2)}
\label{sec:cpp2-plterm-unification}

See also \secref{cpp2-foreign-frame}.

\begin{description}
    \cfunction{bool}{PlTerm::unify_term}{PlTerm}
    \nodescription
    \cfunction{bool}{PlTerm::unify_atom}{PlAtom}
    \nodescription
    \cfunction{bool}{PlTerm::unify_atom}{string}
    \nodescription
    \cfunction{bool}{PlTerm::unify_list_codes}{string}
    \nodescription
    \cfunction{bool}{PlTerm::unify_list_chars}{string}
    \nodescription
    \cfunction{bool}{PlTerm::unify_integer}{int}
    \nodescription
    \cfunction{bool}{PlTerm::unify_float}{double}
    \nodescription
    \cfunction{bool}{PlTerm::unify_string}{string}
    \nodescription
    \cfunction{bool}{PlTerm::unify_functor}{PlFunctor}
    \nodescription
    \cfunction{bool}{PlTerm::unify_pointer}{void *}
    \nodescription
    \cfunction{bool}{PlTerm::unify_nil}{}
    \nodescription
    \cfunction{bool}{PlTerm::unify_blob}{void *blob, size_t len, PL_blob_t *type}
    \nodescription
    \cfunction{bool}{PlTerm::unify_chars}{int flags, size_t len, const char *s}

A family of unification methods are defined for the various Prolog types and
C++ types. Wherever \ctype{string} is shown, you can use:
\begin{itemize}
  \item \ctype{char*}
  \item \ctype{whar_t*}
  \item \ctype{std::string}
  \item \ctype{std::wstring}
\end{itemize}

\end{description}

Here is an example:
\begin{code}
PREDICATE(hostname, 1)
{ char buf[256];
  if ( gethostname(buf, sizeof buf) == 0 )
    return A1.unify_atom(buf);
  return false;
}
\end{code}
An alternative way of writing this would use the \cfuncref{PlCheck}{}
to raise an exception if the unification fails.
\begin{code}
PREDICATE(hostname2, 1)
{ char buf[256];
  PlCheck(gethostname(buf, sizeof buf) == 0);
  PlCheck(A1.unify_atom(buf));
  return true;
}
\end{code}

Of course, in a real program, the failure of
\cfuncref{gethostname}{buf}{sizeof buf} should create an error term
than contains information from \const{errno}.


\subsection{Comparison (version 2)}
\label{sec:cpp2-plterm-comparison}

\begin{description}
    \cfunction{int}{PlTerm::compare}{const PlTerm \&t2}
    \nodescription
    \cfunction{bool}{PlTerm::operator ==}{const PlTerm \&t}
    \nodescription
    \cfunction{bool}{PlTerm::operator !=}{const PlTerm \&t}
    \nodescription
    \cfunction{bool}{PlTerm::operator $<$}{const PlTerm \&t}
    \nodescription
    \cfunction{bool}{PlTerm::operator $>$}{const PlTerm \&t}
    \nodescription
    \cfunction{bool}{PlTerm::operator $<=$}{const PlTerm \&t}
    \nodescription
    \cfunction{bool}{PlTerm::operator $>=$}{const PlTerm \&t}
Compare the instance with \arg{t} and return the result according to
the Prolog defined \jargon{standard order of terms}.
    \cfunction{bool}{PlTerm::operator ==}{long num}
    \nodescription
    \cfunction{bool}{PlTerm::operator !=}{long num}
    \nodescription
    \cfunction{bool}{PlTerm::operator $<$}{long num}
    \nodescription
    \cfunction{bool}{PlTerm::operator $>$}{long num}
    \nodescription
    \cfunction{bool}{PlTerm::operator $<=$}{long num}
    \nodescription
    \cfunction{bool}{PlTerm::operator $>=$}{long num}
Convert \ctype{PlTerm} to a \ctype{long} and perform standard
C-comparison between the two long integers. If \ctype{PlTerm} cannot be
converted a \except{type_error} is raised.

    \cfunction{bool}{PlTerm::operator ==}{const wchar_t *}
    \nodescription
    \cfunction{bool}{PlTerm::operator ==}{const char *}
    \nodescription
    \cfunction{bool}{PlTerm::operator ==}{std::wstring}
    \nodescription
    \cfunction{bool}{PlTerm::operator ==}{std::string}
Yields \const{true} if the \ctype{PlTerm} is an atom or string
representing the same text as the argument, \const{false} if the
conversion was successful, but the strings are not equal and an
\except{type_error} exception if the conversion failed.
\end{description}

Below are some typical examples.  See \secref{cpp2-dirplatom} for direct
manipulation of atoms in their internal representation.

\begin{center}
\begin{tabularlp}{\tt A1 == PlCompound("a(1)")}
\hline
\tt A1 $<$ 0	& Test \arg{A1} to hold a Prolog integer or float
		  that can be transformed lossless to an integer
		  less than zero. \\
\tt A1 $<$ PlTerm(0) &
		  \arg{A1} is before the term `0' in the `standard
		  order of terms'. This means that if \arg{A1}
		  represents an atom, this test yields \const{true}. \\
\tt A1 == PlCompound("a(1)") &
		  Test \arg{A1} to represent the term
		  \exam{a(1)}. \\
\tt A1 == "now" &
		  Test \arg{A1} to be an atom or string holding the
		  text ``now''. \\
\hline
\end{tabularlp}
\end{center}


\subsection{Analysing compound terms (version 2)}
\label{sec:cpp2-plterm-compound}

Compound terms can be viewed as an array of terms with a name and arity
(length). This view is expressed by overloading the \const{[]} operator.

A \except{type_error} is raised if the argument is not compound and a
\except{domain_error} if the index is out of range.

In addition, the following functions are defined:

\begin{description}
    \cfunction{PlTerm}{PlTerm::operator []}{int arg}
If the \ctype{PlTerm} is a compound term and \arg{arg} is between 1 and
the arity of the term, return a new \ctype{PlTerm} representing the
arg-th argument of the term. If \ctype{PlTerm} is not compound, a
\except{type_error} is raised. Id \arg{arg} is out of range, a
\except{domain_error} is raised. Please note the counting from 1 which
is consistent to Prolog's arg/3 predicate, but inconsistent to C's
normal view on an array. See also class \ctype{PlCompound}. The
following example tests \arg{x} to represent a term with first-argument
an atom or string equal to \exam{gnat}.

\begin{code}
   ...,
   if ( x[1] == "gnat" )
     ...
\end{code}

    \cfunction{const char *}{PlTerm::name}{}
Return a \ctype{const char *} holding the name of the functor of the
compound term.  Raises a \except{type_error} if the argument is not
compound.
    \cfunction{size_t}{PlTerm::arity}{}
Returns the arity of the compound term. Raises a \except{type_error} if
the argument is not compound.
\end{description}

\subsection{Miscellaneous (version 2)}
\label{sec:cpp2-plterm-misc}

\begin{description}
    \cfunction{bool}{is_null}{}
       \exam{t.is_null()} is the same as \exam{t.C_ == PlTerm::null}
    \cfunction{bool}{not_null}{}
       \exam{t.not_null()} is the same as \exam{t.C_ != PlTerm::null}
    \cfunction{bool}{reset}{}
       \exam{t.reset()} is the same as \exam{t.C_ = PlTerm::null}
    \cfunction{bool}{reset}{term_t}
       \exam{t.reset(x)} is the same as \exam{t.C_ = x}
    \cfunction{int}{PlTerm::type}{}
Yields the actual type of the term as PL_term_type(). Return values are
\const{PL_VARIABLE}, \const{PL_FLOAT}, \const{PL_INTEGER},
\const{PL_ATOM}, \const{PL_STRING} or \const{PL_TERM}
\end{description}

To avoid very confusing combinations of constructors and therefore
possible undesirable effects a number of subclasses of \ctype{PlTerm}
have been defined that provide constructors for creating special Prolog
terms.  These subclasses are defined below.

\subsection{The class PlTermString (version 2)}
\label{sec:cpp2-plstring}

A SWI-Prolog string represents a byte-string on the global stack.  Its
lifetime is the same as for compound terms and other data living on
the global stack.  Strings are not only a compound representation of
text that is garbage-collected, but as they can contain 0-bytes, they
can be used to contain arbitrary C-data structures. However, it is
generally preferred to use blobs for storing arbitrary C-data structures
(see also \exam{PlTerm_pointer(void *ptr)}).


\begin{description}
    \constructor{PlString}{const wchar_t *text}
    \nodescription
    \constructor{PlString}{const char *text}
Create a SWI-Prolog string object from a 0-terminated C-string.  The
\arg{text} is copied.

    \constructor{PlString}{const wchar_t *text, size_t len}
    \nodescription
    \constructor{PlString}{const char *text, size_t len}
Create a SWI-Prolog string object from a C-string with specified length.
The \arg{text} may contain 0-characters and is copied.
\end{description}

\subsection{The class PlCodeList (version 2)}
\label{sec:cpp2-codelist}

\begin{description}
    \constructor{PlCodeList}{const wchar_t *text}
    \nodescription
    \constructor{PlCodeList}{const char *text}
Create a Prolog list of ASCII codes from a 0-terminated C-string.
\end{description}


\subsection{The class PlCharList (version 2)}
\label{sec:cpp2-plcharlist}

Character lists are compliant to Prolog's atom_chars/2 predicate.

\begin{description}
    \constructor{PlCharList}{const wchar_t *text}
    \nodescription
    \constructor{PlCharList}{const char *text}
Create a Prolog list of one-character atoms from a 0-terminated
C-string.
\end{description}


\subsection{The class PlCompound (version 2)}
\label{sec:cpp2-plcompound}

\begin{description}
    \constructor{PlCompound}{const wchar_t *text}
    \nodescription
    \constructor{PlCompound}{const char *text}
Create a term by parsing (as read/1) the \arg{text}.  If the \arg{text}
is not valid Prolog syntax, a \except{syntax_error} exception is raised.
Otherwise a new term-reference holding the parsed text is created.

    \constructor{PlCompound}{const wchar_t *functor, PlTermv args}
    \nodescription
    \constructor{PlCompound}{const char *functor, PlTermv args}
Create a compound term with the given name from the given vector of
arguments.  See \ctype{PlTermv} for details.  The example below
creates the Prolog term \exam{hello(world)}.

\begin{code}
PlCompound("hello", PlTermv("world"))
\end{code}
\end{description}


\subsection{The class PlTail (version 2)}
\label{sec:cpp2-pltail}

The class \ctype{PlTail} is both for analysing and constructing lists.
It is called \ctype{PlTail} as enumeration-steps make the term-reference
follow the `tail' of the list.

\begin{description}
    \constructor{PlTail}{PlTerm list}
A \ctype{PlTail} is created by making a new term-reference pointing to
the same object.  As \ctype{PlTail} is used to enumerate or build a
Prolog list, the initial \arg{list} term-reference keeps pointing to
the head of the list.
    \cfunction{int}{PlTail::append}{const PlTerm \&element}
Appends \arg{element} to the list and make the \ctype{PlTail} reference
point to the new variable tail.  If \arg{A} is a variable, and this
function is called on it using the argument \exam{"gnat"}, a list of
the form \exam{[gnat|B]} is created and the \ctype{PlTail} object
now points to the new variable \arg{B}.

This function returns \const{true} if the unification succeeded and
\const{false} otherwise.  No exceptions are generated.

The example below translates the \cfuncref{main}{} argument vector to Prolog and
calls the prolog predicate entry/1 with it.

\begin{code}
int
main(int argc, char **argv)
{ PlEngine e(argv[0]);
  PlTermv av(1);
  PlTail l(av[0]);

  for(int i=0; i<argc; i++)
    PlCheck(l.append(argv[i]));
  PlCheck(l.close());

  PlQuery q("entry", av);
  return q.next_solution() ? 0 : 1;
}
\end{code}
    \cfunction{int}{PlTail::close}{}
Unifies the term with \const{[]} and returns the result of the
unification.
    \cfunction{int}{PlTail::next}{PlTerm \&t}
Bind \arg{t} to the next element of the list \ctype{PlTail} and advance
\ctype{PlTail}. Returns \const{true} on success and \const{false} if
\ctype{PlTail} represents the empty list. If \ctype{PlTail} is neither a
list nor the empty list, a \except{type_error} is thrown. The example
below prints the elements of a list.

\begin{code}
PREDICATE(write_list, 1)
{ PlTail tail(A1);
  PlTerm e;

  while(tail.next(e))
    cout << e.as_string() << endl;

  return true;
}
\end{code}
\end{description}


\section{The class PlTermv (version 2)}
\label{sec:cpp2-pltermv}

The class \ctype{PlTermv} represents an array of term-references.  This
type is used to pass the arguments to a foreignly defined predicate,
construct compound terms (see \cfuncref{PlTerm::PlTerm}{const char *name,
PlTermv arguments}) and to create queries (see \ctype{PlQuery}).

The only useful member function is the overloading of \const{[]},
providing (0-based) access to the elements.  Range checking is performed
and raises a \except{domain_error} exception.

The constructors for this class are below.

\begin{description}
    \constructor{PlTermv}{int size}
Create a new array of term-references, all holding variables.
    \constructor{PlTermv}{int size, term_t t0}
Convert a C-interface defined term-array into an instance.
    \constructor{PlTermv}{PlTerm ...}
Create a vector from 1 to 5 initialising arguments.  For example:

\begin{code}
load_file(const char *file)
{ return PlCall("compile", PlTermv(file));
}
\end{code}

If the vector has to contain more than 5 elements, the following
construction should be used:

\begin{code}
{ PlTermv av(10);

  av[0] = "hello";
  ...
}
\end{code}
\end{description}


\section{The class PlAtom - Supporting Prolog constants (version 2)}
\label{sec:cpp2-prolog-constants}

Both for quick comparison as for quick building of lists of atoms, it
is desirable to provide access to Prolog's atom-table, mapping handles
to unique string-constants.  If the handles of two atoms are different
it is guaranteed they represent different text strings.

Suppose we want to test whether a term represents a certain atom, this
interface presents a large number of alternatives:

\subsection{Direct comparision to char *}
\label{sec:cpp2-direct-commparison-to-char-star}

Example:

\begin{code}
PREDICATE(test, 1)
{ if ( A1 == "read" )
    ...;
}
\end{code}

This writes easily and is the preferred method is performance is not
critical and only a few comparisons have to be made. It validates
\arg{A1} to be a term-reference representing text (atom, string, integer
or float) extracts the represented text and uses strcmp() to match the
strings.

\subsection{Direct comparision to PlAtom}		\label{sec:cpp2-dirplatom}

Example:

\begin{code}
static PlAtom ATOM_read("read");

PREDICATE(test, 1)
{ if ( A1 == ATOM_read )
    ...;
}
\end{code}

This case raises a \except{type_error} if \arg{A1} is not an atom.
Otherwise it extacts the atom-handle and compares it to the atom-handle
of the global \ctype{PlAtom} object. This approach is faster and
provides more strict type-checking.

\subsection{Extraction of the atom and comparison to PlAtom}
\label{sec:cpp2-extraction-comparison-atoms}

Example:

\begin{code}
static PlAtom ATOM_read("read");

PREDICATE(test, 1)
{ PlAtom a1(A1);

  if ( a1 == ATOM_read )
    ...;
}
\end{code}

This approach is basically the same as \secref{cpp2-dirplatom}, but in
nested if-then-else the extraction of the atom from the term is
done only once.

\subsection{Extraction of the atom and comparison to char *}
\label{sec:cpp2-extraction-comparison-char-star}

Example:

\begin{code}
PREDICATE(test, 1)
{ PlAtom a1(A1);

  if ( a1 == "read" )
    ...;
}
\end{code}

This approach extracts the atom once and for each test extracts
the represented string from the atom and compares it.  It avoids
the need for global atom constructors.

\begin{description}
    \constructor{PlAtom}{atom_t handle}
Create from C-interface atom handle (\ctype{atom_t}).  Used internally and for
integration with the C-interface.
    \constructor{PlAtom}{const char_t *text}
    \nodescription
    \constructor{PlAtom}{const wchar *text}
    \nodescription
    \constructor{PlAtom}{const std::string\& text}
    \nodescription
    \constructor{PlAtom}{const std::wstring\& text}
Create an atom from a string.  The \arg{text} is copied if a new atom
is created. See PL_new_atom(), PL_new_atom_wchars(),
PL_new_atom_nchars(), PL_new_atom_wchars().
    \constructor{PlAtom}{const PlTerm \&t}
If \arg{t} represents an atom, the new instance represents this
atom.  Otherwise a \except{type_error} is thrown.
    \cfunction{int}{PlAtom::operator ==}{const wchar_t *text}
    \nodescription
    \cfunction{int}{PlAtom::operator ==}{const char *text}
    \nodescription
    \cfunction{int}{PlAtom::operator ==}{const std::string\& text}
    \nodescription
    \cfunction{int}{PlAtom::operator ==}{const std::wstring\& text}
Yields \const{true} if the atom represents \arg{text}, \const{false}
otherwise.  Performs a \cfuncref{strcmp}{} or similar for this.
    \cfunction{int}{PlAtom::operator ==}{const PlAtom \&a}
Compares the two atom-handles, returning \const{true} or
\const{false}. Because atoms are unique, there is no need
to use strcmp() for this.
    \cfunction{int}{PlAtom::operator !=}{const wchar_t *text}
    \nodescription
    \cfunction{int}{PlAtom::operator !=}{const char *text}
    \nodescription
    \cfunction{int}{PlAtom::operator !=}{const std::string\& text}
    \nodescription
    \cfunction{int}{PlAtom::operator !=}{const std::wstring\& text}
    \nodescription
    \cfunction{int}{PlAtom::operator !=}{const PlAtom \&a}
The inverse of the \exam{==} operator.
    \cfunction{bool}{is_valid}{}
Verifies that the handle is valid. This can be used after calling
a function that returns an atom handle, to check that a new atom
was created.
    \cfunction{void}{reset}{}
Sets the handle to an invalid valid - a subsequent call to \cfuncref{is_null}{}
will return \const{true}.
    \cfunction{const std::string}{as_string}{PlEncoding enc=EncLocale}
Returns the string representation of the atom.\footnote{If you wish
to return a \ctype{char*} from a function, you should not do
\exam{return t.as_string().c_str()} because that will return a pointer
into the stack (Gnu C++ or Clang options \exam{-Wreturn-stack-address}
or \exam{-Wreturn-local-addr}) can \emph{sometimes} catch this, as can
the runtime address sanitizer when run with
\exam{detect_stack_use_after_return=1}.}
This does not
quote or escape any characters that would need to be escaped
if the atom were to be input to the Prolog parser. The possible values
for \exam{enc} are:
  \begin{itemize}
    \item \exam{EncLatin1} - throws an exception if cannot be represented in ASCII.
    \item \exam{EncUTF8}
    \item \exam{EncLocale} - uses the locale to determine the representation.
  \end{itemize}
    \cfunction{const std:wstring}{as_wstring}{}
Returns the string representation of the atom. This does not
quote or escape any characters that would need to be escaped
if the atom were to be input to the Prolog parser.
    \cfunction{void}{register_atom}{}
See PL_register_atom().
    \cfunction{void}{unregister_atom}{}
See PL_unregister_atom().
    \cfunction{void*}{blob_data}{size_t *len, struct PL_blob_t **type}
See PL_blob_data().
\end{description}

\section{Unification and foreign frames (version 2)}
\label{sec:cpp2-foreign-frame}

As documented with PL_unify(), if a unification call fails and control isn't
made immediately to Prolog, any changes made by unification must be undone.
The functions PL_open_foreign_frame(), PL_rewind_foreign_frame(), and
PL_close_foreign_frame() are encapsulated in the class \ctype{PlFrame},
whose destructor calls PL_close_foreign_frame(). Using this, the example
code with PL_unify() can be written:
\begin{code}
{ PlFrame frame;
  ...
  if ( !t1.unify_term(t2) )
    frame.rewind();
  ...
}
\end{code}
Note that \cfuncref{PlTerm::unify_term}{} checks for an exception and
throws an exception to Prolog; if you with to handle exceptions, you
must call \exam{PL_unify_term(t1.C_,t2.C_)}.

\section{The class PlRegister (version 2)}
\label{sec:cpp2-plregister}

This class encapsulates PL_register_foreign().  It is defined as a class
rather then a function to exploit the C++ \jargon{global constructor}
feature.  This class provides a constructor to deal with the \cfuncref{PREDICATE}{}
way of defining foreign predicates as well as constructors to deal with
more conventional foreign predicate definitions.

\begin{description}
    \constructor{PlRegister}{const char *module,
			     const char *name,
			     int arity,
			     foreign_t (f)(term_t t0, int a, control_t ctx)}
Register \arg{f} as a the implementation of the foreign predicate
<name>/<arity>.  This interface uses the \const{PL_FA_VARARGS} calling
convention, where the argument list of the predicate is passed using an
array of \ctype{term_t} objects as returned by PL_new_term_refs().  This
interface poses no limits on the arity of the predicate and is faster,
especially for a large number of arguments.
    \constructor{PlRegister}{const char *module,
			     const char *name,
			     foreign_t (*f)(PlTerm a0, \ldots)}
Registers functions for use with the traditional calling conventional,
where each positional argument to the predicate is passed as an argument
to the function \arg{f}. This can be used to define functions as
predicates similar to what is used in the C-interface:

\begin{code}
static foreign_t
pl_hello(PlTerm a1)
{ ...
}

PlRegister x_hello_1(NULL, "hello", 1, pl_hello);
\end{code}

This construct is currently supported upto 3 arguments.
\end{description}


\section{The class PlQuery (version 2)}
\label{sec:cpp2-plquery}

This class encapsulates the call-backs onto Prolog.

\begin{description}
    \constructor{PlQuery}{const char *name, const PlTermv \&av}
Create a query where \arg{name} defines the name of the predicate and
\arg{av} the argument vector.  The arity is deduced from \arg{av}.  The
predicate is located in the Prolog module \module{user}.
    \constructor{PlQuery}{const char *module, const char *name,
			  const PlTermv \&av}
Same, but performs the predicate lookup in the indicated module.
    \cfunction{int}{PlQuery::next_solution}{}
Provide the next solution to the query.  Yields \const{true} if
successful and \const{false} if there are no (more) solutions.
Prolog exceptions are mapped to C++ exceptions.
    \cfunction{void}{PlQuery::cut()}{}
Discards the query, but does not delete an of the data created
by the query. If there is any pending Prolog exception, it is
mapped to a C++ exception and thrown.
The call to \cfuncref{PlQuery::cut}{} is done implicitly by \ctype{PlQuery}'s destructor.

Below is an example listing the currently defined Prolog modules
to the terminal.

\begin{code}
PREDICATE(list_modules, 0)
{ PlTermv av(1);

  PlQuery q("current_module", av);
  while( q.next_solution() )
    cout << av[0].as_string() << endl;

  return true;
}
\end{code}
\end{description}

In addition to the above, the following functions have been defined.

\begin{description}
    \cfunction{int}{PlCall}{const char *predicate, const PlTermv \&av}
Creates a \ctype{PlQuery} from the arguments generates the
first \cfuncref{next_solution}{} and destroys the query.  Returns the
result of \cfuncref{next_solution}{} or an exception.
    \cfunction{int}{PlCall}{const char *module, const char *predicate,
			    const PlTermv \&av}
Same, locating the predicate in the named module.
    \cfunction{int}{PlCall}{const wchar_t *goal}
    \nodescription
    \cfunction{int}{PlCall}{const char *goal}
Translates \arg{goal} into a term and calls this term as the other
\cfuncref{PlCall}{} variations. Especially suitable for simple goals such as making
Prolog load a file.
\end{description}

\subsection{The class PlFrame (version 2)}
\label{sec:cpp2-plframe}

The class \ctype{PlFrame} provides an interface to discard unused
term-references as well as rewinding unifications
(\jargon{data-backtracking}). Reclaiming unused term-references is
automatically performed after a call to a C++-defined predicate has
finished and returns control to Prolog. In this scenario \ctype{PlFrame}
is rarely of any use. This class comes into play if the toplevel program
is defined in C++ and calls Prolog multiple times.  Setting up arguments
to a query requires term-references and using \ctype{PlFrame} is the
only way to reclaim them.

\begin{description}
    \constructor{PlFrame}{}
Creating an instance of this class marks all term-references created
afterwards to be valid only in the scope of this instance.
    \destructor{PlFrame}
Reclaims all term-references created after constructing the instance.
    \cfunction{void}{PlFrame::rewind}{}
Discards all term-references {\bf and} global-stack data created as well
as undoing all unifications after the instance was created.
\end{description}

\index{assert}%
A typical use for \ctype{PlFrame} is the definition of C++ functions
that call Prolog and may be called repeatedly from C++.  Consider the
definition of assertWord(), adding a fact to word/1:

\begin{code}
void
assertWord(const char *word)
{ PlFrame fr;
  PlTermv av(1);

  av[0] = PlCompound("word", PlTermv(word));
  PlQuery q("assert", av);
  PlCheck(q.next_solution());
}
\end{code}


This example shows the most sensible use of \ctype{PlFrame} if it is
used in the context of a foreign predicate. The predicate's thruth-value
is the same as for the Prolog unification (=/2), but has no
side effects. In Prolog one would use double negation to achieve this.

\begin{code}
PREDICATE(can_unify, 2)
{ PlFrame fr;

  int rval = (A1=A2);
  fr.rewind();
  return rval;
}
\end{code}

\cfuncref{PlRewindOnFail}{f} is a convenience function that does a frame rewind if
unification fails. Here is an example, where \exam{name_to_term}
contains a map from names to terms (which are made global by using the
PL_record() function):

\begin{code}
static const std::map<const std::string, record_t> name_to_term =
    { {"a", PlTerm(...).record()}, ...};

bool lookup_term(const std::string name, PlTerm result)
{ const auto it = name_to_term.find(name);
  if ( it == name_to_term.cend() )
    return false;

  PlTerm t = PlTerm_recorded(it->second);
  return PlRewindOnFail([result,t]() -> bool { return result.unify_term(t); });
}
\end{code}

\section{The PREDICATE and PREDICATE_NONDET macros (version 2)}
\label{sec:cpp2-predicate-macro}

The PREDICATE macro is there to make your code look nice, taking care of
the interface to the C-defined SWI-Prolog kernel as well as mapping
exceptions.  Using the macro

\begin{code}
PREDICATE(hello, 1)
\end{code}

is the same as writing:\footnote{There are a few more details,
such as catching \exam{std::bad_alloc}.}:

\begin{code}
static foreign_t pl_hello__1(PlTermv PL_av);

static foreign_t
_pl_hello__1(term_t t0, int arity, control_t ctx)
{ (void)arity; (void)ctx;
  try
  { return pl_hello__1(PlTermv(1, t0));
  } catch( PlFail& )
  { return false;
  } catch ( PlException& ex )
  { return ex.plThrow();
  }
}

static PlRegister _x_hello__1("hello", 1, _pl_hello__1);

static foreign_t
pl_hello__1(PlTermv PL_av)
\end{code}

The first function converts the parameters passed from the Prolog
kernel to a \ctype{PlTermv} instance and maps exceptions raised in the
body to simple failure or Prolog exceptions.  The \ctype{PlRegister}
global constructor registers the predicate.  Finally, the function
header for the implementation is created.

\subsection{Variations of the PREDICATE macro (version 2)}
\label{sec:cpp2-predicate-macro-variations}

The \cfuncref{PREDICATE}{} macros have a number of variations that deal with
special cases.

\begin{description}
    \cmacro{}{PREDICATE0}{name}
This is the same as PREDICATE(name, 0).  It avoids a compiler warning
about that \const{PL_av} is not used.

    \cmacro{}{NAMED_PREDICATE}{plname, cname, arity}
This version can be used to create predicates whose name is not a valid
C++ identifier. Here is a ---hypothetical--- example, which unifies the
second argument with a stringified version of the first. The `cname' is
used to create a name for the functions. The concrete name does not
matter, but must be unique. Typically it is a descriptive name using the
limitations imposed by C++ indentifiers.

    \begin{code}
    NAMED_PREDICATE("#", hash, 2)
    { A2 = (wchar_t*)A1;
    }
    \end{code}

    \cmacro{}{PREDICATE_NONDET}{name, arity}
Define a non-deterministic Prolog predicate in C++. See also
\secref{cpp2-nondet}.

    \cmacro{}{NAMED_PREDICATE_NONDET}{plname, cname, arity}
Define a non-deterministic Prolog predicate in C++, whose name
is not a valid C++ identifier. See also \secref{cpp2-nondet}.

\end{description}

\subsection{Non-deterministic predicates (version 2)}
\label{sec:cpp2-nondet}

Non-deterministic predicates are defined using
\cfuncref{PREDICATE_NONDET}{plname, cname, arity} or
\cfuncref{NAMED_PREDICATE_NONDET}{plname, cname, arity}.

A non-deterministic predicate returns a "context", which is passed to a
a subsequent retry. Typically, this context is allocated on the first
call to the predicate and freed when the predicate either fails or
does its last successful return. To simplify this, a template helper class
\ctype{PlForeignContextPtr<\emph{ContextType}>} provides a "smart
pointer" that frees the context on normal return or an exception;
if \cfuncref{PlForeignContextPtr$<$ContextType$>$::keep}{}
is called, the pointer isn't freed on return or exception.

The skeleton for a typical non-deterministic predicate is:

\begin{code}
struct PredContext { ... }; // The "context" for retries

PREDICATE_NONDET(pred, <arity>)
{ PlForeignContextPtr<PredContext> ctxt(handle);
  switch( PL_foreign_control(handle) )
  { case PL_FIRST_CALL:
      ctxt.set(new PredContext(...));
      ...
      break;
    case PL_REDO:
      break;
    case PL_PRUNED:
      return true;
  }

  if ( ... )
    return false; // Failure (and no more solutions)
    // or throw PlFail();

  if ( ... )
    return true;  // Success (and no more solutions)

  ...

  ctxt.keep();
  PL_retry_address(ctxt.get()); // Succeed with a choice point
}
\end{code}


\subsection{Controlling the Prolog destination module (version 2)}
\label{sec:cpp2-module}

With no special precautions, the predicates are defined into the
module from which load_foreign_library/1 was called, or in the module
\const{user} if there is no Prolog context from which to deduce the
module such as while linking the extension statically with the Prolog
kernel.

Alternatively, {\em before} loading the SWI-Prolog include file, the
macro PROLOG_MODULE may be defined to a string containing the name of
the destination module. A module name may only contain alpha-numerical
characters (letters, digits, _).  See the example below:

\begin{code}
#define PROLOG_MODULE "math"
#include <SWI-Prolog.h>
#include <math.h>

PREDICATE(pi, 1)
{ A1 = M_PI;
}
\end{code}

\begin{code}
?- math:pi(X).

X = 3.14159
\end{code}


\section{Exceptions (version 2)}
\label{sec:cpp2-exceptions}

Prolog exceptions are mapped to C++ exceptions using the subclass
\ctype{PlException} of \ctype{PlTerm} to represent the Prolog exception
term. All type-conversion functions of the interface raise
Prolog-compliant exceptions, providing decent error-handling support at
no extra work for the programmer.

For some commonly used exceptions, subclasses of \ctype{PlException}
have been created to exploit both their constructors for easy creation
of these exceptions as well as selective trapping in C++.  Currently,
these are \ctype{PlTypeEror} and \ctype{PlDomainError},
\ctype{PlTermvDomainError}, \ctype{PlInstantiationError},
\ctype{PlExistenceError}, \ctype{PermissionError}, \ctype{PlResourceError},
and \ctype{PlException_qid}.

To throw an exception, create an instance of \ctype{PlException} and
use \exam{throw}. This is intercepted by the PREDICATE macro and
turned into a Prolog exception. See \secref{cpp2-exceptions-notes}.

\begin{code}
  char *data = "users";

  throw PlException(PlCompound("no_database", PlTerm(data)));
\end{code}

\subsection{The class PlException (version 2)}
\label{sec:cpp2-plexception}

This subclass of \ctype{PlTerm} is used to represent exceptions.
Currently defined methods are:

\begin{description}
    \constructor{PlException}{const PlTerm \&t}
Create an exception from a general Prolog term.  This provides the
interface for throwing any Prolog terms as an exception.
    \cfunction{std::string}{as_string}{}
The exception is translated into a message as produced by
print_message/2.  The character data is stored in a ring.  Example:

\begin{code}
  ...;
  try
  { PlCall("consult(load)");
  } catch ( PlException& ex )
  { cerr << ex.as_string() << endl;
  }
\end{code}
    \cfunction{int}{plThrow}{}
Used in the \cfuncref{PREDICATE}{} wrapper to pass the exception to Prolog.  See
PL_raise_exeption().

\end{description}



\subsection{The class PlTypeError (version 2)}
\label{sec:cpp2-pl-type-error}

A \jargon{type error} expresses that a term does not satisfy the
expected basic Prolog type.

\begin{description}
    \constructor{PlTypeError}{const char *expected, const PlTerm \&actual}
Creates an ISO standard Prolog error term expressing the
\arg{expected} type and \arg{actual} term that does not satisfy this
type.
\end{description}


\subsection{The class PlDomainError (version 2)}
\label{sec:cpp2-pl-domain-error}

A \jargon{domain error} expresses that a term satisfies the basic
Prolog type expected, but is unacceptable to the restricted domain
expected by some operation.  For example, the standard Prolog open/3
call expect an \const{io_mode} (read, write, append, ...). If an integer
is provided, this is a \jargon{type error}, if an atom other than one
of the defined io-modes is provided it is a \jargon{domain error}.

\begin{description}
    \constructor{PlDomainError}{const char *expected, const PlTerm \&actual}
Creates an ISO standard Prolog error term expressing a the
\arg{expected} domain and the \arg{actual} term found.
\end{description}


\section{Embedded applications (version 2)}
\label{sec:cpp2-embedding}

Most of the above assumes Prolog is `in charge' of the application and
C++ is used to add functionality to Prolog, either for accessing
external resources or for performance reasons.  In some applications,
there is a \jargon{main-program} and we want to use Prolog as a
\jargon{logic server}.  For these applications, the class
\ctype{PlEngine} has been defined.

Only a single instance of this class can exist in a process.  When used
in a multi-threading application, only one thread at a time may have
a running query on this engine.  Applications should ensure this using
proper locking techniques.%
    \footnote{For Unix, there is a multi-threaded version of SWI-Prolog.
	      In this version each thread can create and destroy a
	      thread-engine. There is currently no C++ interface defined
	      to access this functionality, though ---of course--- you
	      can use the C-functions.}

\begin{description}
    \constructor{PlEngine}{int argc, char **argv}
Initialises the Prolog engine.  The application should make sure to
pass \exam{argv[0]} from its main function, which is needed in the
Unix version to find the running executable.  See PL_initialise()
for details.
    \constructor{PlEngine}{char *argv0}
Simple constructure using the main constructor with the specified
argument for \exam{argv[0]}.
    \destructor{PlEngine}
Calls PL_cleanup() to destroy all data created by the Prolog engine.
\end{description}

\Secref{pltail} has a simple example using this class.


\section{Considerations (version 2)}
\label{sec:cpp2-considerations}

\subsection{The C++ versus the C interface (version 2)}
\label{sec:cpp2-vs-c}

Not all functionality of the C-interface is provided, but as
\ctype{PlTerm} and \ctype{term_t} are essentially the same thing with
type-conversion between the two (using the \exam{C_} field), this interface
can be freely mixed with the functions defined for plain C.
For checking return codes from C functions, it is recommended to
use \cfuncref{PlCheck}{}.

Using this interface rather than the plain C-interface requires a little
more resources. More term-references are wasted (but reclaimed on return
to Prolog or using \ctype{PlFrame}). Use of some intermediate types
(\ctype{functor_t} etc.) is not supported in the current interface,
causing more hash-table lookups. This could be fixed, at the price of
slighly complicating the interface.

\subsection{Notes on exceptions}
\label{sec:cpp2-exceptions-notes}

Exceptions are normal Prolog terms that are handled specially by the
PREDICATE macro when they are used by a C++ \exam{throw}, and
converted into Prolog exceptions.  The exception term may not be
unbound; that is, throw(_) must raise an error. The C++ code and
underlying C code do not explicitly check for the term being a
variable, and behaviour of raising an exception that is an unbound
term is undefined, including the possibility of causing a crash or
corrupting data.

The Prolog exception term error(Formal, _) is special.  If the 2nd
argument of error/2 is undefined, and the term is thrown, the system
finds the catcher (if any), and calls the hooks in
library(prolog_stack) to add the context and stack trace information
when appropriate.  That is, \exam{throw PlDomainError(Domain,Culprit)}
ends up doing the same thing as calling
\exam{PL_domain_error(Domain,Culprit)} which internally calls
PL_raise_exception() and returns control back to Prolog.

The VM handling of calling to C finds the \const{FALSE} return code,
checks for the pending exception and propagates the exception into the
Prolog environment.  As the term references (\ctype{term_t}) used to
create the exception are lost while returning from the foreign
function we need some way to protect them.  That is done using a
global \ctype{term_t} handle that is allocated at the epoch of Prolog.
PL_raise_exception() sets this to the term using PL_put_term().
PL_exception(0) returns the global exception \ctype{term_t} if it is
bound and 0 otherwise.

Special care needs to be taken with data backtracking using
PL_discard_foreign_frame() or PL_close_query() because that will
invalidate the exception term.  So, between raising the exception and
returning control back to Prolog we must make sure not to do anything
that invalidates the exception term.  If you suspect something like
that to happen, use the debugger with a breakpoint on
\cfuncref{__do_undo__LD}{} defined in \file{pl-wam.c}.

In order to always preserve Prolog exceptions and return as quickly as
possible to Prolog on an exception, some of the C++ classes can throw
an exception in their destructor. This is theoretically a dangerous
thing to do, and can lead to a crash or program termination if the
destructor is envoked as part of handling another exception.

\subsection{Static linking and embedding (version 2)}
\label{sec:cpp2-linking}

The mechanisms outlined in this document can be used for static linking
with the SWI-Prolog kernel using \manref{swipl-ld}{1}. In general the
C++ linker should be used to deal with the C++ runtime libraries and
global constructors.

\subsection{Status and compiler versions (version 2)}
\label{sec:cpp2-status}

The current interface is entirely defined in the \fileext{h} file using
inlined code.  This approach has a few advantages: as no C++ code is in
the Prolog kernel, different C++ compilers with different name-mangling
schemas can cooperate smoothly.

Also, changes to the header file have no consequences to binary
compatibility with the SWI-Prolog kernel. This makes it possible to have
different versions of the header file with few compatibility
consequences.

As of 2022-11, some details remain to be decided, mostly to do
with encodings. A few methods have a \ctype{PlEncoding} optional
parameter (e.g., \cfuncref{PlTerm::as_string}{}), but this hasn't yet been
extended to all methods that take or return a string. Also, the
details of how the default encoding is set have not yet been decided.

As of 2022-11, the various error convenience classes do not fully
match what the equivalent C functions do. That is,
\exam{throw PlInstantiationError(A1)} does not result in the same
context and traceback information that calling that would happen
from \exam{PL_instantiation_error(A1.C_); throw PlFail()}.
See \secref{cpp2-exceptions-notes}.

\section{Conclusions (version 2)}
\label{sec:cpp2-conclusions}

In this document, we presented a high-level interface to Prolog
exploiting automatic type-conversion and exception-handling defined in
C++.

Programming using this interface is much more natural and requires only
little extra resources in terms of time and memory.

Especially the smooth integration between C++ and Prolog exceptions
reduce the coding effort for type checking and reporting in foreign
predicates.