1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#!/usr/bin/python3
import os,sys
import re
import matplotlib.pyplot as plt
import argparse
import subprocess
import numpy as np
import collections
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
description="plot likelihood profile for sequence ")
parser.add_argument("--orf_id", type=str, required=True, help="orf accession")
parser.add_argument("--longest_orfs_cds", type=str, required=True, help="long orfs cds file")
parser.add_argument("--kmer_scores", type=str, required=True, help= "kmer likelihood score file")
parser.add_argument("--sort", action='store_true')
parser.add_argument("--cumsum", action='store_true')
parser.add_argument("--max_repeat", type=int, required=False, default=None, help="max repeat count for framed hexamer")
args = parser.parse_args()
def main():
seq = get_seq(args.orf_id, args.longest_orfs_cds)
framed_kmers_to_likelihoods = parse_kmer_likelihoods(args.kmer_scores)
score_vec = score_seq(seq, framed_kmers_to_likelihoods)
print("sum: {}".format(sum(score_vec)))
if args.sort:
score_vec.sort()
if args.cumsum:
plt.plot(list(range(1,len(score_vec)+1)), np.cumsum(score_vec), marker ='o')
else:
plt.plot(list(range(1,len(score_vec)+1)), score_vec, marker ='+')
plt.show()
def score_seq(seq, framed_kmer_likelihoods):
score_vec = []
seq = seq.upper()
framed_kmer_counter = collections.defaultdict(int)
for i in range(0, len(seq)):
frame = i % 3
markov_use = min(i, 5)
kmer = seq[i-markov_use:i+1]
codon = seq[i:i+3]
#print "codon: {}, frame: {}".format(codon, frame)
# don't include stop codon
if i == len(seq)-2-1 and frame == 0:
if codon in ('TAA', 'TAG', 'TGA'):
break
#print("i:{}, markov_use:{}, kmer:{}".format(i, markov_use, kmer))
framed_kmer = "{}-{}".format(kmer, frame)
framed_kmer_counter[framed_kmer] += 1
if args.max_repeat is not None and framed_kmer_counter[framed_kmer] > args.max_repeat:
continue
loglikelihood = framed_kmer_likelihoods[framed_kmer]
print("i:{}, {}, likelihood: {}".format(i, framed_kmer, loglikelihood))
score_vec.append(loglikelihood)
return score_vec
def parse_kmer_likelihoods(kmer_scores_file):
framed_kmers_to_likelihoods = {}
with open(kmer_scores_file) as fh:
for line in fh:
if re.search("^#", line): continue
line = line.rstrip()
(framed_kmer, count, countkmerminus1, likelihood) = line.split("\t")
framed_kmers_to_likelihoods[framed_kmer] = float(likelihood)
return framed_kmers_to_likelihoods
def get_seq(orf_id, fasta_file):
cmd = "samtools faidx {} \"{}\"".format(fasta_file, orf_id)
fasta_entry = subprocess.check_output(cmd, shell=True)
print(fasta_entry)
lines = fasta_entry.split("\n")
header = lines.pop(0)
seq = "".join(lines)
seq = seq.replace(" ", "")
return seq
if __name__ == '__main__':
main()
|