File: HypothesisEvaluator.cpp

package info (click to toggle)
tvc 5.0.3%2Bgit20151221.80e144e%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,548 kB
  • sloc: cpp: 24,088; ansic: 3,933; python: 260; makefile: 16
file content (245 lines) | stat: -rw-r--r-- 10,911 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* Copyright (C) 2011 Ion Torrent Systems, Inc. All Rights Reserved */

//! @file     HypothesisEvaluator.cpp
//! @ingroup  VariantCaller
//! @brief    HP Indel detection

#include "HypothesisEvaluator.h"

// Function to fill in prediceted signal values
int CalculateHypPredictions(
    PersistingThreadObjects  &thread_objects,
    const Alignment          &my_read,
    const InputStructures    &global_context,
    const vector<string>     &Hypotheses,
    const vector<bool>       &same_as_null_hypothesis,
    vector<vector<float> >   &predictions,
    vector<vector<float> >   &normalizedMeasurements,
    int flow_upper_bound) {

    // --- Step 1: Initialize Objects

	if (global_context.DEBUG > 2)
	  cout << "Prediction Generation for read " << my_read.alignment.Name << endl;

    predictions.resize(Hypotheses.size());
    normalizedMeasurements.resize(Hypotheses.size());
    // Careful: num_flows may be smaller than flow_order.num_flows()
    const ion::FlowOrder & flow_order = global_context.flow_order_vector.at(my_read.flow_order_index);
    const int & num_flows = global_context.num_flows_by_run_id.at(my_read.runid);
    int prefix_flow = 0;

    BasecallerRead master_read;
    master_read.SetData(my_read.measurements, flow_order.num_flows());
    InitializeBasecallers(thread_objects, my_read, global_context);

    // --- Step 2: Processing read prefix or solve beginning of the read if desired
    unsigned int prefix_size = 0;
    if (global_context.resolve_clipped_bases or my_read.prefix_flow < 0) {
      prefix_flow = GetStartOfMasterRead(thread_objects, my_read, global_context, Hypotheses, num_flows, master_read);
      prefix_size = master_read.sequence.size();
    }
    else {
      const string & read_prefix = global_context.key_by_read_group.at(my_read.read_group);
      prefix_size = read_prefix.length();
      for (unsigned int i_base=0; i_base < read_prefix.length(); i_base++)
        master_read.sequence.push_back(read_prefix.at(i_base));
      prefix_flow = my_read.prefix_flow;
    }

    // --- Step 3: creating predictions for the individual hypotheses

    // Compute an upper limit of flows to be simulated or solved
    if (global_context.DEBUG > 2)
      cout << "Prediction Generation: determining flow upper bound (flow_order.num_flows()=" << flow_order.num_flows() << ") as the minimum of:"
           << " flow_upper_bound " << flow_upper_bound
           << " measurement_length " << my_read.measurements_length
           << " num_flows " << num_flows << endl;
    flow_upper_bound = min(flow_upper_bound, min(my_read.measurements_length, num_flows));

    vector<BasecallerRead> hypothesesReads(Hypotheses.size());
    int max_last_flow  = 0;

    for (unsigned int i_hyp=0; i_hyp<hypothesesReads.size(); ++i_hyp) {

    	// No need to simulate if a hypothesis is equal to the read as called
    	// We get that info from the splicing module
    	if (same_as_null_hypothesis.at(i_hyp)) {
            predictions[i_hyp] = predictions[0];
            predictions[i_hyp].resize(flow_order.num_flows());
            normalizedMeasurements[i_hyp] = normalizedMeasurements[0];
            normalizedMeasurements[i_hyp].resize(flow_order.num_flows());
        } else {

            hypothesesReads[i_hyp] = master_read;

            // --- add hypothesis sequence to clipped prefix
            unsigned int i_base = 0;
            unsigned int max_bases = 2*(unsigned int)flow_order.num_flows()-prefix_size; // Our maximum allocated memory for the sequence vector
            int i_flow = prefix_flow;

            // Add bases to read object sequence
            // We add one more base beyond 'flow_upper_bound' (if available) to signal Treephaser to not even start the solver
            while (i_base<Hypotheses[i_hyp].length() and i_base<max_bases) {
              IncrementFlow(flow_order, Hypotheses[i_hyp][i_base], i_flow);
              hypothesesReads[i_hyp].sequence.push_back(Hypotheses[i_hyp][i_base]);
              if (i_flow >= flow_upper_bound) {
            	i_flow = flow_upper_bound;
                break;
              }
              i_base++;
            }

            // Find last main incorporating flow of all hypotheses
            max_last_flow = max(max_last_flow, i_flow);

            // Solver simulates beginning of the read and then fills in the remaining clipped bases
            // Above checks on flow_upper_bound and i_flow guarantee that i_flow <= flow_upper_bound <= num_flows
            thread_objects.SolveRead(my_read.flow_order_index, hypothesesReads[i_hyp], min(i_flow,flow_upper_bound), flow_upper_bound);

            // Store predictions and adaptively normalized measurements
            predictions[i_hyp].swap(hypothesesReads[i_hyp].prediction);
            predictions[i_hyp].resize(flow_order.num_flows(), 0);
            normalizedMeasurements[i_hyp].swap(hypothesesReads[i_hyp].normalized_measurements);
            normalizedMeasurements[i_hyp].resize(flow_order.num_flows(), 0);
        }
    }

    // --- verbose ---
    if (global_context.DEBUG>2)
      PredictionGenerationVerbose(Hypotheses, hypothesesReads, my_read, predictions, prefix_size, global_context);

    //return max_last_flow;
    return (max_last_flow);
}

// ----------------------------------------------------------------------

void InitializeBasecallers(PersistingThreadObjects &thread_objects,
                           const Alignment         &my_read,
                           const InputStructures   &global_context) {

  // Set phasing parameters
  thread_objects.SetModelParameters(my_read.flow_order_index, my_read.phase_params);

  // Set up HP recalibration model: hide the recal object behind a mask so we can use the map to select
  thread_objects.DisableRecalibration(my_read.flow_order_index); // Disable use of a previously loaded recalibration model

  if (global_context.do_recal.recal_is_live()) {
    // query recalibration structure using row, column, entity
    // look up entity here: using row, col, runid
    // note: perhaps do this when we first get the read, exploit here
    string found_key = global_context.do_recal.FindKey(my_read.runid, my_read.well_rowcol[1], my_read.well_rowcol[0]);
    MultiAB multi_ab;
    global_context.do_recal.getAB(multi_ab, found_key, my_read.well_rowcol[1], my_read.well_rowcol[0]);
    if (multi_ab.Valid())
      thread_objects.SetAsBs(my_read.flow_order_index, multi_ab.aPtr, multi_ab.bPtr);
  }
}

// ----------------------------------------------------------------------

int GetStartOfMasterRead(PersistingThreadObjects   &thread_objects,
                          const Alignment          &my_read,
                          const InputStructures    &global_context,
                          const vector<string>     &Hypotheses,
                          const int                &nFlows,
                          BasecallerRead           &master_read) {

  // Solve beginning of maybe clipped read
  const ion::FlowOrder & flow_order = global_context.flow_order_vector.at(my_read.flow_order_index);

  int until_flow = min((my_read.start_flow+20), nFlows);
  if (my_read.start_flow > 0)
    thread_objects.SolveRead(my_read.flow_order_index, master_read, 0, until_flow);

  // StartFlow clipped? Get solved HP length at startFlow.
  unsigned int base = 0;
  int flow = 0;
  unsigned int HPlength = 0;
  while (base < master_read.sequence.size()) {
    while (flow < flow_order.num_flows() and flow_order.nuc_at(flow) != master_read.sequence[base]) {
      flow++;
    }
    if (flow > my_read.start_flow or flow == flow_order.num_flows())
      break;
    if (flow == my_read.start_flow)
      HPlength++;
    base++;
  }
  if (global_context.DEBUG>2)
    printf("Solved %d bases until (not incl.) flow %d. HP of height %d at flow %d.\n", base, flow, HPlength, my_read.start_flow);

  // Get HP size at the start of the read as called in Hypotheses[0]
  unsigned int count = 1;
  while (count < Hypotheses[0].length() and Hypotheses[0][count] == Hypotheses[0][0])
    count++;
  if (global_context.DEBUG>2)
    printf("Hypothesis starts with an HP of length %d\n", count);
  // Adjust the length of the prefix and erase extra solved bases
  if (HPlength>count)
    base -= count;
  else
    base -= HPlength;
  master_read.sequence.erase(master_read.sequence.begin()+base, master_read.sequence.end());

  // Get flow of last prefix base
  int prefix_flow = 0;
  for (unsigned int i_base = 0; i_base < master_read.sequence.size(); i_base++)
    IncrementFlow(flow_order, master_read.sequence[i_base], prefix_flow);
  return prefix_flow;
}


// ----------------------------------------------------------------------

void PredictionGenerationVerbose(const vector<string>         &Hypotheses,
                                 const vector<BasecallerRead> &hypothesesReads,
                                 const Alignment              &my_read,
                                 const vector<vector<float> > &predictions,
                                 const int                    &prefix_size,
                                 const InputStructures        &global_context) {

  const int & num_flows = global_context.num_flows_by_run_id.at(my_read.runid);

  printf("Calculating predictions for %d hypotheses starting at flow %d:\n", (int)Hypotheses.size(), my_read.start_flow);
  for (unsigned int iHyp=0; iHyp<Hypotheses.size(); ++iHyp) {
    for (unsigned int iBase=0; iBase<Hypotheses[iHyp].length(); ++iBase)
      printf("%c", Hypotheses[iHyp][iBase]);
    printf("\n");
  }
  printf("5' read prefix: ");
  for (int iBase=0; iBase<prefix_size; ++iBase)
    printf("%c", hypothesesReads[0].sequence[iBase]);
  printf("\n");
  printf("Extended Hypotheses reads to:\n");
  for (unsigned int iHyp=0; iHyp<hypothesesReads.size(); ++iHyp) {
    for (unsigned int iBase=0; iBase<hypothesesReads[iHyp].sequence.size(); ++iBase)
      printf("%c", hypothesesReads[iHyp].sequence[iBase]);
    printf("\n");
  }
  printf("Phasing Parameters, cf: %f ie: %f dr: %f \n Predictions: \n",
          my_read.phase_params[0], my_read.phase_params[1], my_read.phase_params[2]);
  cout << "Flow Order  : ";
  for (int i_flow=0; i_flow<num_flows; i_flow++) {
    cout << global_context.flow_order_vector.at(my_read.flow_order_index).nuc_at(i_flow) << "    ";
  }
  cout << endl << "Flow Index  : ";
  for (int i_flow=0; i_flow<num_flows; i_flow++) {
      cout << i_flow << " ";
      if (i_flow<10)        cout << "   ";
      else if (i_flow<100)  cout << "  ";
      else if (i_flow<1000) cout << " ";
    }

  cout << endl;
  for (unsigned int i_Hyp=0; i_Hyp<hypothesesReads.size(); ++i_Hyp) {
	cout << "Prediction "<< i_Hyp << ": ";
    for (unsigned int i_flow=0; i_flow<predictions[i_Hyp].size(); ++i_flow) {
      printf("%.2f", predictions[i_Hyp][i_flow]);
      if (predictions[i_Hyp][i_flow] < 10)
        cout << " ";
    }
    cout << endl;
  }
}