1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
|
/* Copyright (C) 2012 Ion Torrent Systems, Inc. All Rights Reserved */
//! @file ClassifyVariant.cpp
//! @ingroup VariantCaller
//! @brief HP Indel detection
#include "ClassifyVariant.h"
#include "ErrorMotifs.h"
#include "StackEngine.h"
// This function only works for the 1Base -> 1 Base snp representation
void AlleleIdentity::SubCategorizeSNP(const LocalReferenceContext &reference_context) {
// This classification only works if allele lengths == 1
// Flag for realignment if alt Base matches either of the flanking Ref bases
// Variant may actually be part of an undercalled or overcalled HP
char altBase = altAllele[0];
ref_hp_length = reference_context.my_hp_length[0];
// Construct legacy variables from new structure of LocalReferenceContext
// SNP with bases different on both sides
// genome 44 45 46 47 48 49 (0 based)
// ref is A A A A T G
// alt is A (position 48, left_anchor == 0 for SNPs)
// position0 48
// my_hp_start_pos {48}
// matches position0 so refBaseLeft = ref_left_hp_base='A'
// my_hp_length { 1}
// my_hp_start_pos[0] + my_hp_length[0] - 1 = 48 + 1 -1 = 48
// matches position0 so refBaseRight = ref_right_hp_base='G'
// left_hp_length = 4
// ref_left_hp_base =A
// left_hp_start =44
// altBase A matches refBaseLeft A so realign
// SNP with bases the same on the left
// ref is C C A A A G G
// alt is T
// position0 48
// my_hp_start_pos {46}
// doesn't match position0 so refBaseLeft = ref base = 'A'
// my_hp_length { 3}
// my_hp_start_pos[0] + my_hp_length[0] - 1 = 46 + 3 -1 = 48
// matches position0 so refBaseRight = ref_right_hp_base='G'
// altBase T does not match refBaseLeft A or refBaseRight G so do not realign
// SNP with bases the same on the left
// ref is C C C C A A G
// alt is T
// position0 48
// my_hp_start_pos {48}
// matches position0 so refBaseLeft = ref_left_hp_base='C'
// my_hp_length { 2}
// my_hp_start_pos[0] + my_hp_length[0] - 1 = 48 + 2 -1 = 49
// doesn't match position0 so refBaseRight = ref base = 'A'
// altBase T does not match refBaseLeft C or refBaseRight A so do not realign
char refBaseLeft = (reference_context.position0 == reference_context.my_hp_start_pos[0]) ?
reference_context.ref_left_hp_base : reference_context.reference_allele[0];
char refBaseRight = (reference_context.position0 == reference_context.my_hp_start_pos[0] + reference_context.my_hp_length[0] - 1) ?
reference_context.ref_right_hp_base : reference_context.reference_allele[0];
if (altBase == refBaseLeft || altBase == refBaseRight) {
// Flag possible misalignment for further investigation
status.doRealignment = true;
if (DEBUG > 0)
cout << "-Possible SNP alignment error detected-";
}
}
#define invalidBase 'X'
inline bool isValidBase(char base) { return (base != invalidBase); }
inline char getNextHPBase(string const& allele, int *ix, char currentBase, int direction){
// side effect is to modify pos to be the index of the next HP base
int newIx = *ix + direction;
while( newIx >= 0 && newIx < (int)allele.size() &&
allele.at(newIx) == currentBase )
newIx = newIx + direction;
if (newIx >= 0 && newIx < (int)allele.size() ){
*ix = newIx;
return ( allele.at(newIx) );
}
return (invalidBase);
}
void AlleleIdentity::SubCategorizeMNP(const LocalReferenceContext &reference_context) {
// This function only works for the n Base -> n Base mnp representation
// Possible misalign, align by right shift, example:
// Ref: AAGGGTTTTCCAT
// Alt: GGTTTCCCAT
// Algorithm:
// for HP base in Alt (eg G, T, C)
// if (0th base)
// find HP base in ref to right
// else
// find next right adjacent HP base
// test if same base
// If all match, flag for realignment (possible on right)
// repeat for left side
//
// Variant may actually be part of an undercalled or overcalled HP
if ( ! reference_context.context_detected )
return;
assert(altAllele.size()==reference_context.reference_allele.size());
// possible misalign, align by left shift)
// Ref: GGTTAC (refBaseLeft = G = reference_context.ref_left_hp_base)
// Var: GTAA
// Ref: GTTTAC (refBaseLeft = T = reference_context.reference_allele.at(start_index))
// Var: GTAC
int start_index = left_anchor; // start index of real variant
char altBaseLeft = altAllele.at(start_index);
int altPos = start_index;
long ref_start_pos = reference_context.position0 + start_index;
char refBaseLeft = (reference_context.my_hp_start_pos.at(start_index) == ref_start_pos)
? reference_context.ref_left_hp_base : reference_context.reference_allele.at(start_index);
int refPos = (reference_context.my_hp_start_pos.at(start_index) == ref_start_pos)
? start_index -1 : start_index;
bool leftAlign = true;
char altBase = altBaseLeft;
char refBase = refBaseLeft;
while ( isValidBase(altBase) && isValidBase(refBase) ) {
if ( altBase != refBase ){
leftAlign = false;
break;
}
refBase = getNextHPBase(reference_context.reference_allele, &refPos, refBase, 1);
altBase = getNextHPBase(altAllele, &altPos, altBase, 1);
}
if (leftAlign) {
status.doRealignment = true;
}
if (!leftAlign) {
// Ref: AGTT
// Var: GT (possible misalign, align by right shift)
int end_index = altAllele.size()-1-right_anchor; // end index of real variant
char altBaseRight = altAllele.at(end_index);
altPos = end_index;
ref_hp_length = reference_context.my_hp_length.at(start_index);
long ref_end_pos = reference_context.position0 + end_index;
long ref_right_hp_end = reference_context.my_hp_start_pos.at(end_index) + reference_context.my_hp_length.at(end_index);
char refBaseRight = (ref_end_pos == ref_right_hp_end) ?
reference_context.ref_right_hp_base : reference_context.reference_allele.at(end_index);
refPos = (ref_end_pos == ref_right_hp_end) ? end_index+1 : end_index;
bool rightAlign = true;
altBase = altBaseRight;
refBase = refBaseRight;
while ( isValidBase(altBase) && isValidBase(refBase) ) {
if ( altBase != refBase ){
rightAlign = false;
break;
}
refBase = getNextHPBase(reference_context.reference_allele, &refPos, refBase, -1);
altBase = getNextHPBase(altAllele, &altPos, altBase, -1);
}
if(rightAlign) {
status.doRealignment = true;
}
}
if (DEBUG > 0 and status.doRealignment) {
cout << "-Possible MNP alignment error detected-";
}
}
/*void AlleleIdentity::DetectPotentialCorrelation(const LocalReferenceContext& reference_context){
// in the case in which we are deleting/inserting multiple different bases
// there may be extra correlation in the measurements because of over/under normalization in homopolymers
// we head off this case
// count transitions in reference
// for now the only probable way I can see this happening is XXXXXXYYYYY case, yielding XY as the variant
// i.e. NXY -> N (deletion)
// N -> NXY (insertion)
// in theory, if the data is bad enough, could happen to 1-mers, but unlikely.
// note that SNPs are anticorrelated, so don't really have this problem
if (reference_context.reference_allele.length()==3 && altAllele.length()==1 && status.isDeletion)
if (reference_context.reference_allele[1]!=reference_context.reference_allele[2])
status.isPotentiallyCorrelated = true;
if (altAllele.length()==3 && reference_context.reference_allele.length()==1 && status.isInsertion)
if (altAllele[1]!=altAllele[2])
status.isPotentiallyCorrelated = true;
}*/
// Test whether this is an HP-InDel
void AlleleIdentity::IdentifyHPdeletion(const LocalReferenceContext& reference_context) {
// Get right anchor for better HP-InDel classification
right_anchor = 0;
// It's a deletion, so reference allele must be longer than alternative allele
int shorter_test_pos = altAllele.length() - 1;
int longer_test_pos = reference_context.reference_allele.length() - 1;
while (shorter_test_pos >= left_anchor and
altAllele[shorter_test_pos] == reference_context.reference_allele[longer_test_pos]) {
right_anchor++;
shorter_test_pos--;
longer_test_pos--;
}
if (left_anchor+right_anchor < (int)altAllele.length()){
// If the anchors do not add up to the length of the shorter allele,
// a more complex substitution happened and we don't classify as HP-InDel
status.isHPIndel = false;
}
else {
status.isHPIndel = reference_context.my_hp_length[left_anchor] > 1;
for (int i_base=left_anchor+1; (status.isHPIndel and i_base<(int)reference_context.reference_allele.length()-right_anchor); i_base++){
status.isHPIndel = status.isHPIndel and (reference_context.my_hp_length[left_anchor] > 1);
}
}
inDelLength = reference_context.reference_allele.length() - altAllele.length();
}
// Test whether this is an HP-InDel
void AlleleIdentity::IdentifyHPinsertion(const LocalReferenceContext& reference_context,
const ReferenceReader &ref_reader, int chr_idx) {
char ref_base_right_of_anchor;
int ref_right_hp_length = 0;
ref_hp_length = 0;
status.isHPIndel = false;
if (left_anchor == (int)reference_context.reference_allele.length()) {
ref_base_right_of_anchor = reference_context.ref_right_hp_base;
ref_right_hp_length = reference_context.right_hp_length;
}
else {
ref_base_right_of_anchor = reference_context.reference_allele[left_anchor];
ref_right_hp_length = reference_context.my_hp_length[left_anchor];
}
if (left_anchor > 0 and altAllele[left_anchor] == altAllele[left_anchor - 1]) {
status.isHPIndel = true;
ref_hp_length = reference_context.my_hp_length[left_anchor - 1];
}
if (altAllele[left_anchor] == ref_base_right_of_anchor) {
status.isHPIndel = true;
ref_hp_length = ref_right_hp_length;
}
inDelLength = altAllele.length() - reference_context.reference_allele.length();
if (status.isHPIndel) {
for (int b_idx = left_anchor + 1; b_idx < left_anchor + inDelLength; b_idx++) {
if (altAllele[b_idx] != altAllele[left_anchor])
status.isHPIndel = false;
}
} else if (inDelLength == 1) {
status.isHPIndel = IdentifyDyslexicMotive(altAllele[left_anchor], reference_context.position0+left_anchor,
ref_reader, chr_idx);
}
}
// Identify some special motives
bool AlleleIdentity::IdentifyDyslexicMotive(char base, int position,
const ReferenceReader &ref_reader, int chr_idx) {
status.isDyslexic = false;
long test_position = position-2;
unsigned int max_hp_distance = 4;
unsigned int hp_distance = 0;
unsigned int my_hp_length = 0;
// Test left vicinity of insertion
while (!status.isDyslexic and test_position>0 and hp_distance < max_hp_distance) {
if (ref_reader.base(chr_idx,test_position) != ref_reader.base(chr_idx,test_position-1)) {
hp_distance++;
my_hp_length = 0;
}
else if (ref_reader.base(chr_idx,test_position) == base) {
my_hp_length++;
if(my_hp_length >= 2) { // trigger when a 3mer or more is found
status.isDyslexic = true;
}
}
test_position--;
}
if (status.isDyslexic) return (true);
// test right vicinity of insertion
hp_distance = 0;
my_hp_length = 0;
test_position = position+1;
while (!status.isDyslexic and test_position<ref_reader.chr_size(chr_idx) and hp_distance < max_hp_distance) {
if (ref_reader.base(chr_idx,test_position) != ref_reader.base(chr_idx,test_position-1)) {
hp_distance++;
my_hp_length = 0;
}
else if (ref_reader.base(chr_idx,test_position) == base) {
my_hp_length++;
if(my_hp_length >= 2) { // trigger when a 3mer or more is found
status.isDyslexic = true;
}
}
test_position++;
}
return status.isDyslexic;
}
// We categorize InDels
bool AlleleIdentity::SubCategorizeInDel(const LocalReferenceContext& reference_context,
const ReferenceReader &ref_reader, int chr_idx) {
// These fields are set no matter what
status.isDeletion = (reference_context.reference_allele.length() > altAllele.length());
status.isInsertion = (reference_context.reference_allele.length() < altAllele.length());
if (status.isDeletion) {
IdentifyHPdeletion(reference_context);
ref_hp_length = reference_context.my_hp_length[left_anchor];
}
else { // Insertion
IdentifyHPinsertion(reference_context, ref_reader, chr_idx);
}
if (DEBUG > 0){
cout << " is an InDel";
if (status.isInsertion) cout << ", an Insertion of length " << inDelLength;
if (status.isDeletion) cout << ", a Deletion of length " << inDelLength;
if (status.isHPIndel) cout << ", and an HP-Indel";
if (status.isDyslexic) cout << ", and dyslexic";
cout << "." << endl;
}
return (true);
}
bool AlleleIdentity::CharacterizeVariantStatus(const LocalReferenceContext &reference_context,
const ReferenceReader &ref_reader, int chr_idx)
{
//cout << "Hello from CharacterizeVariantStatus; " << altAllele << endl;
bool is_ok = true;
status.isIndel = false;
status.isHPIndel = false;
status.isSNP = false;
status.isMNV = false;
status.isPaddedSNP = false;
status.doRealignment = false;
// Get Anchor length
ref_hp_length = reference_context.my_hp_length[0];
left_anchor = 0;
unsigned int a_idx = 0;
while (a_idx < altAllele.length() and a_idx < reference_context.reference_allele.length()
and altAllele[a_idx] == reference_context.reference_allele[a_idx]) {
a_idx++;
left_anchor++;
}
if (DEBUG > 0)
cout << "- Alternative Allele " << altAllele << " (anchor length " << left_anchor << ") ";
const string& ref_allele = reference_context.reference_allele;
const string& alt_allele = altAllele;
int ref_length = ref_allele.length();
int alt_length = alt_allele.length();
while (alt_length > 1 and ref_length > 1 and alt_allele[alt_length-1] == ref_allele[ref_length-1]) {
--alt_length;
--ref_length;
}
int prefix = 0;
while (prefix < alt_length and prefix < ref_length and alt_allele[prefix] == ref_allele[prefix])
++prefix;
ref_length -= prefix;
alt_length -= prefix;
// Change classification to better reflect what we can get with haplotyping
if (altAllele.length() != reference_context.reference_allele.length()) {
status.isIndel = true;
is_ok = SubCategorizeInDel(reference_context, ref_reader, chr_idx);
} else if ((int)altAllele.length() == 1) { // Categorize function only works with this setting
status.isSNP = true;
SubCategorizeSNP(reference_context);
if (DEBUG > 0) cout << " is a SNP." << endl;
} else {
status.isMNV = true;
ref_hp_length = reference_context.my_hp_length[left_anchor];
if (ref_length == 1 and alt_length == 1)
status.isPaddedSNP = true;
SubCategorizeMNP(reference_context);
if (DEBUG > 0)
cout << " is an MNP." << endl;
}
return (is_ok);
}
bool AlleleIdentity::CheckValidAltAllele(const LocalReferenceContext &reference_context) {
for (unsigned int idx=0; idx<altAllele.length(); idx++) {
switch (altAllele[idx]) {
case ('A'): break;
case ('C'): break;
case ('G'): break;
case ('T'): break;
default:
cerr << "Non-fatal ERROR: Alt Allele contains characters other than ACGT at VCF Position "
<< reference_context.contigName << ":" << reference_context.position0+1
<< " Alt Allele: " << altAllele << endl;
cout << "Non-fatal ERROR: Alt Allele contains characters other than ACGT at VCF Position "
<< reference_context.contigName << ":" << reference_context.position0+1
<< " Alt Allele: " << altAllele << endl;
return (false);
}
}
return true;
}
// Entry point for variant classification
bool AlleleIdentity::getVariantType(
const string _altAllele,
const LocalReferenceContext &reference_context,
const TIonMotifSet & ErrorMotifs,
const ClassifyFilters &filter_variant,
const ReferenceReader &ref_reader,
int chr_idx) {
altAllele = _altAllele;
bool is_ok = reference_context.context_detected;
if ((reference_context.position0 + (long)altAllele.length()) > ref_reader.chr_size(chr_idx)) {
is_ok = false;
}
// We should now be guaranteed a valid variant position in here
if (is_ok) {
is_ok = CharacterizeVariantStatus(reference_context, ref_reader, chr_idx);
PredictSequenceMotifSSE(reference_context, ErrorMotifs, ref_reader, chr_idx);
}
is_ok = is_ok and CheckValidAltAllele(reference_context);
if (!is_ok) {
status.isProblematicAllele = true;
filterReasons.push_back("BADCANDIDATE");
}
return(is_ok);
}
/*
// Should almost not be called anywhere anymore...
void AlleleIdentity::ModifyStartPosForAllele(int variantPos) {
if (status.isSNP || status.isMNV)
modified_start_pos = variantPos - 1; //0 based position for SNP location
else
modified_start_pos = variantPos;
}
*/
// Checks the reference area around variantPos for a multi-nucleotide repeat and it's span
// Logic: When shifting a window of the same period as the MNR, the base entering the window has to be equal to the base leaving the window.
// example with period 2: XYZACACA|CA|CACAIJK
bool AlleleIdentity::IdentifyMultiNucRepeatSection(const LocalReferenceContext &seq_context, unsigned int rep_period,
const ReferenceReader &ref_reader, int chr_idx) {
//cout << "Hello from IdentifyMultiNucRepeatSection with period " << rep_period << "!"<< endl;
unsigned int variantPos = seq_context.position0 + left_anchor;
if (variantPos + rep_period >= (unsigned long)ref_reader.chr_size(chr_idx))
return (false);
CircluarBuffer<char> window(rep_period);
for (unsigned int idx = 0; idx < rep_period; idx++)
window.assign(idx, ref_reader.base(chr_idx,variantPos+idx));
// Investigate (inclusive) start position of MNR region
start_window = variantPos - 1; // 1 anchor base
window.shiftLeft(1);
while (start_window > 0 and window.first() == ref_reader.base(chr_idx,start_window)) {
start_window--;
window.shiftLeft(1);
}
// Investigate (exclusive) end position of MNR region
end_window = variantPos + rep_period;
if (end_window >= ref_reader.chr_size(chr_idx))
return false;
for (unsigned int idx = 0; idx < rep_period; idx++)
window.assign(idx, ref_reader.base(chr_idx,variantPos+idx));
window.shiftRight(1);
while (end_window < ref_reader.chr_size(chr_idx) and window.last() == ref_reader.base(chr_idx,end_window)) {
end_window++;
window.shiftRight(1);
}
//cout << "Found repeat stretch of length: " << (end_window - start_window) << endl;
// Require that a stretch of at least 3*rep_period has to be found to count as a MNR
if ((end_window - start_window) >= (3*(int)rep_period)) {
// Correct start and end of the window if they are not fully outside variant allele
if (start_window >= seq_context.position0)
start_window = seq_context.my_hp_start_pos[0] - 1;
if (end_window <= seq_context.right_hp_start) {
if (status.isInsertion)
end_window = seq_context.right_hp_start + seq_context.right_hp_length + 1;
else
end_window = seq_context.right_hp_start + 1;
}
if (start_window < 0)
start_window = 0;
if (end_window > ref_reader.chr_size(chr_idx))
end_window = ref_reader.chr_size(chr_idx);
return (true);
}
else
return (false);
}
// -----------------------------------------------------------------
void AlleleIdentity::CalculateWindowForVariant(const LocalReferenceContext &seq_context, int DEBUG,
const ReferenceReader &ref_reader, int chr_idx) {
// If we have an invalid vcf candidate, set a length zero window and exit
if (!seq_context.context_detected or status.isProblematicAllele) {
start_window = seq_context.position0;
end_window = seq_context.position0;
return;
}
// Check for MNRs first, for InDelLengths 2,3,4,5
if (status.isIndel and !status.isHPIndel and inDelLength < 5)
for (int rep_period = 2; rep_period < 6; rep_period++)
if (IdentifyMultiNucRepeatSection(seq_context, rep_period, ref_reader, chr_idx)) {
if (DEBUG > 0) {
cout << "MNR found in allele " << seq_context.reference_allele << " -> " << altAllele << endl;
cout << "Window for allele " << altAllele << ": (" << start_window << ") ";
for (int p_idx = start_window; p_idx < end_window; p_idx++)
cout << ref_reader.base(chr_idx,p_idx);
cout << " (" << end_window << ") " << endl;
}
return; // Found a matching period and computed window
}
// not an MNR. Moving on along to InDels.
if (status.isIndel) {
// Default variant window
end_window = seq_context.right_hp_start +1; // Anchor base to the right of allele
start_window = seq_context.position0;
// Adjustments if necessary
if (status.isDeletion)
if (seq_context.my_hp_start_pos[left_anchor] == seq_context.my_hp_start_pos[0])
start_window = seq_context.my_hp_start_pos[0] - 1;
if (status.isInsertion) {
if (left_anchor == 0) {
start_window = seq_context.my_hp_start_pos[0] - 1;
}
else if (altAllele[left_anchor] == altAllele[left_anchor - 1] and
seq_context.position0 > (seq_context.my_hp_start_pos[left_anchor - 1] - 1)) {
start_window = seq_context.my_hp_start_pos[left_anchor - 1] - 1;
}
if (altAllele[altAllele.length() - 1] == seq_context.ref_right_hp_base) {
end_window += seq_context.right_hp_length;
}
}
// Safety
if (start_window < 0)
start_window = 0;
if (end_window > ref_reader.chr_size(chr_idx))
end_window = ref_reader.chr_size(chr_idx);
}
else {
// SNPs and MNVs are 1->1 base replacements
start_window = seq_context.position0;
end_window = seq_context.position0 + seq_context.reference_allele.length();
} // */
if (DEBUG > 0) {
cout << "Window for allele " << altAllele << ": (" << start_window << ") ";
for (int p_idx = start_window; p_idx < end_window; p_idx++)
cout << ref_reader.base(chr_idx,p_idx);
cout << " (" << end_window << ") " << endl;
}
}
// ------------------------------------------------------------------------------
// Filtering functions
void AlleleIdentity::PredictSequenceMotifSSE(const LocalReferenceContext &reference_context,
const TIonMotifSet & ErrorMotifs,
const ReferenceReader &ref_reader, int chr_idx) {
//cout << "Hello from PredictSequenceMotifSSE" << endl;
sse_prob_positive_strand = 0;
sse_prob_negative_strand = 0;
//long vcf_position = reference_context.position0+1;
long var_position = reference_context.position0 + left_anchor; // This points to the first deleted base
string seqContext;
// status.isHPIndel && status.isDeletion implies reference_context.my_hp_length.at(left_anchor) > 1
if (status.isHPIndel && status.isDeletion) {
// cout << start_pos << "\t" << variant_context.refBaseAtCandidatePosition << variant_context.ref_hp_length << "\t" << variant_context.refBaseLeft << variant_context.left_hp_length << "\t" << variant_context.refBaseRight << variant_context.right_hp_length << "\t";
unsigned context_left = var_position >= 10 ? 10 : var_position;
//if (var_position + reference_context.my_hp_length.at(left_anchor) + 10 < ref_reader.chr_size(chr_idx))
seqContext = ref_reader.substr(chr_idx, var_position - context_left, context_left + (unsigned int)reference_context.my_hp_length[left_anchor] + 10);
// else
// seqContext = ref_reader.substr(chr_idx, var_position - context_left);
if (seqContext.length() > 0 && context_left < seqContext.length()) {
sse_prob_positive_strand = ErrorMotifs.get_sse_probability(seqContext, context_left);
//cout << seqContext << "\t" << context_left << "\t" << sse_prob_positive_strand << "\t";
context_left = seqContext.length() - context_left - 1;
string reverse_seqContext;
ReverseComplement(seqContext, reverse_seqContext);
sse_prob_negative_strand = ErrorMotifs.get_sse_probability(reverse_seqContext, context_left);
// cout << reverse_seqContext << "\t" << context_left << "\t" << sse_prob_negative_strand << "\t";
}
}
}
void AlleleIdentity::DetectLongHPThresholdCases(const LocalReferenceContext &seq_context, int maxHPLength) {
if (status.isIndel && ref_hp_length > maxHPLength) {
filterReasons.push_back("HPLEN");
status.isProblematicAllele = true;
}
}
void AlleleIdentity::DetectNotAVariant(const LocalReferenceContext &seq_context) {
if (altAllele.compare(seq_context.reference_allele) == 0) {
//incorrect allele status is passed thru make it a no call
status.isProblematicAllele = true;
filterReasons.push_back("NOTAVARIANT");
}
}
void AlleleIdentity::DetectCasesToForceNoCall(const LocalReferenceContext &seq_context, const ClassifyFilters &filter_variant,
const VariantSpecificParams& variant_specific_params)
{
DetectNotAVariant(seq_context);
DetectLongHPThresholdCases(seq_context, variant_specific_params.hp_max_length_override ?
variant_specific_params.hp_max_length : filter_variant.hp_max_length);
}
// ====================================================================
void EnsembleEval::SetupAllAlleles(const ExtendParameters ¶meters,
const InputStructures &global_context,
const ReferenceReader &ref_reader,
int chr_idx)
{
seq_context.DetectContext(*variant, global_context.DEBUG, ref_reader, chr_idx);
allele_identity_vector.resize(variant->alt.size());
if (global_context.DEBUG > 0 and variant->alt.size()>0) {
cout << "Investigating variant candidate " << seq_context.reference_allele
<< " -> " << variant->alt[0];
for (uint8_t i_allele = 1; i_allele < allele_identity_vector.size(); i_allele++)
cout << ',' << variant->alt[i_allele];
cout << endl;
}
//now calculate the allele type (SNP/Indel/MNV/HPIndel etc.) and window for hypothesis calculation for each alt allele.
for (uint8_t i_allele = 0; i_allele < allele_identity_vector.size(); i_allele++) {
// TODO: Hotspot should be an allele property but we only set all or none to Hotspots, depending on the vcf record
allele_identity_vector[i_allele].status.isHotSpot = variant->isHotSpot;
allele_identity_vector[i_allele].filterReasons.clear();
allele_identity_vector[i_allele].DEBUG = global_context.DEBUG;
allele_identity_vector[i_allele].indelActAsHPIndel = parameters.my_controls.filter_variant.indel_as_hpindel;
allele_identity_vector[i_allele].getVariantType(variant->alt[i_allele], seq_context,
global_context.ErrorMotifs, parameters.my_controls.filter_variant, ref_reader, chr_idx);
allele_identity_vector[i_allele].CalculateWindowForVariant(seq_context, global_context.DEBUG, ref_reader, chr_idx);
}
//GetMultiAlleleVariantWindow();
multiallele_window_start = -1;
multiallele_window_end = -1;
// Mark Ensemble for realignment if any of the possible variants should be realigned
// TODO: Should we exclude already filtered alleles?
for (uint8_t i_allele = 0; i_allele < allele_identity_vector.size(); i_allele++) {
//if (!allele_identity_vector[i_allele].status.isNoCallVariant) {
if (allele_identity_vector[i_allele].start_window < multiallele_window_start or multiallele_window_start == -1)
multiallele_window_start = allele_identity_vector[i_allele].start_window;
if (allele_identity_vector[i_allele].end_window > multiallele_window_end or multiallele_window_end == -1)
multiallele_window_end = allele_identity_vector[i_allele].end_window;
if (allele_identity_vector[i_allele].ActAsSNP() && parameters.my_controls.filter_variant.do_snp_realignment) {
doRealignment = doRealignment or allele_identity_vector[i_allele].status.doRealignment;
}
if (allele_identity_vector[i_allele].ActAsMNP() && parameters.my_controls.filter_variant.do_mnp_realignment) {
doRealignment = doRealignment or allele_identity_vector[i_allele].status.doRealignment;
}
}
// Hack: pass allele windows back down the object
for (uint8_t i_allele = 0; i_allele < allele_identity_vector.size(); i_allele++) {
allele_identity_vector[i_allele].start_window = multiallele_window_start;
allele_identity_vector[i_allele].end_window = multiallele_window_end;
}
if (global_context.DEBUG > 0) {
cout << "Realignment for this candidate is turned " << (doRealignment ? "on" : "off") << endl;
cout << "Final window for multi-allele: " << ": (" << multiallele_window_start << ") ";
for (int p_idx = multiallele_window_start; p_idx < multiallele_window_end; p_idx++)
cout << ref_reader.base(chr_idx,p_idx);
cout << " (" << multiallele_window_end << ") " << endl;
}
}
// ------------------------------------------------------------
void EnsembleEval::FilterAllAlleles(const ClassifyFilters &filter_variant, const vector<VariantSpecificParams>& variant_specific_params) {
if (seq_context.context_detected) {
for (uint8_t i_allele = 0; i_allele < allele_identity_vector.size(); i_allele++) {
allele_identity_vector[i_allele].DetectCasesToForceNoCall(seq_context, filter_variant, variant_specific_params[i_allele]);
}
}
}
|